

UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE(Iwue Doe Eae Ed)

videotape version of the course that would also be made available. At the
request of the government one of the two course presentations was relocated
from Atlanta, Georgia to Fort Belvoir, Virginia. The resulting contract
modification deleted the requirement for developing the videotape version
of the course as there were insufficient funds available to procure this
item.

T

.1
UNCLASSIFIED

SECURITY CLAWF~ICA1ION OF THIS PAISIR~M" DO*. EIMW.

GEORGIA INSTITUTE OF TECHNOLOGY
ENGINEERING EXPERIMENT STATION

Sponsored by

Defense Advanced Research Projects Agency (DoD)

ARPA Order No. 3922

Monitored by

Ballistic Missile Defense Advanced Technology Center

Under Contract No. DASG60-80-C-0041

Ada Education for Technical Managers

Accession For
KTIS GRA&I

FINAL TECHNICAL REPORT DTIC TAB

EES/GIT PROJECT C#250 U'iannouneed Q
Georgia Tech Research Institute Justification

By
January 15, 1981 Distributicn/

Availability Codes
Avail and/or

by Dist Special

John F. Passafiume, (404) 894-3417

Computer Science and Technology Laboratory
Engineering Experiment Station
Georgia Institute of Technology

The views and conclusions contained in this document are those of

the authors and should not be interpreted as necessarily
representing

the official policies, either expressed or implied, of the Defense

Advanced Research Projects Agency or the U. S. Government.

1.

i:

ABSTRACT

• goal of this project was to develop a model course in the Ada language to

train technical managers in its use with embedded command and control systems.

The course was developed under the guidance of the Higher Order Language

Working Group's sub-committee on training and was presented to DoD technical

managers at two separate sessions. It was originally intended that a video-

tape version of the course would be developed and made available throughout

the DoD as well as industry. This effort had to be dropped due to a reduction

of the available funds. Course material in the form of viewgraph transparency

masters, course outline, nd course notes have been provided to DARPA and are

currently under review.

TABLE OF CONTENTS

Section Page

- I. INTRODUCTION 1

II. TASK OBJECTIVES 3

Ill. GENERAL METHODOLOGY 5

IV. RESULTS AND CONCLUSIONS 10

V. RECOMMENDATIONS 13

VI. REFERENCES 14

APPENDIX -COURSE MATERIAL ADA EDUCATION FOR TECHNICAL MANAGERS

I. INTRODUCTION

To cope with the increasingly costly and difficult problem of defense system

software management, the Department of Defense established the High Order

Language Working Group (ROLWG) in 1975. The mission of the HOLWG was to

formulate DoD requirements for high order languages, to evaluate existing

languages against those requirements and to implement the minimal set of

languages for DoD use. As an administrative initiative, DoD Directive 5000.29

mandated the use of HOLs in new embedded computer systems and DoD Directive

5000.31 gave an interim list of approved HOLs. The HOLWG developed a coordi-

nated set of requirements for a common DoD HOL. The group determined that

none of the existing languages fully satisfied these requirements and that a

single language meeting the requirements was both feasible and desirable. The

Ada language was the result of an extensive design, development and test and

evaluation effort. Steps in the ongoing phase of the program include produc-

tion of compilers and other tools for software development and maintenance,

control of the language, and validation of compilers. It is intended that

government-funded compilers and software tools as well as the compiler vali-

dation facility will be widely and inexpensively available and well main-

tained.

This course, Ada Education for Technical Managers, was designed to provide

military contractors and end-users with the necessary background to under-

stand the value and impact of the Ada language concepts and features. An

integrated approach to Ada instruction is used in which both management and

technical rationale and data are provided. The course includes motivational

and management level information required by technical managers who have the

responsibility to make programmuing language decisions, to justify those deci-

sions, and to assure acceptance and smooth introduction of a new programming

language. In addition, sufficient technical specifics of the language such as

its design philosophy, constructs and syntax are given to enable the technical

manager to see the benefits of using Ada in software systems and using its

sophisticated features as they were intended.

This report sumlmarizes the efforts of the Georgia Institute of Tech-

nology to develop the model course. The course was developed by the joint

* efforts of the Engineering Experiment Station and the Department of Con-

tinuing Education. The overall goal was to develop a set of course materials

that could be provided to DoD or other interested participants at the cost of

reproduction thus proliferating knowledge of the Ada language throughout the

community. Two sub-goals of the program were to present the model course on

two occasions to DoD personnel and to develop a videotape version of the

course that would also be made available. At the request of the government

one of the two course presentations was relocated from Atlanta, Georgia to

Fort Belvoir, Virginia. The resulting contract modification deleted the

requirement for developing the videotape version of the course as there were

insufficient funds available to procure this item.

Georgia Tech has completed the effort on this project and provided copies

of all course materials to the sponsoring agency.

2

11. TASK OBJECTIVES

The overall project objective was to develop teaching materials to beh

used in a one week Ada education course for technical managers. This included

a course outline, lecture notes, viewgraphs, and videotapes. The course was

tailored for persons having software management and decision making responsi-

bilities. The course described the background motivation and merits of Ada

and provided sufficient exposure to the language such that course partici-

pants could perform nontrivial tasks using the Ada language. In carrying out

the proposed effort, Georgia Tech performed the following tasks.

Task I - Review of Current Ada Documents

A review of reference manuals and teaching materials currently available

for the Ada programming language was conducted. This task required minimal

effort and time, but served to acquaint project personnel with modifications

to "older" documents and the status and content of materials already under

development.

Task 11 - Design of Ada Course Outline

GIT/EES and ICS personnel designed and specified the structure and con-

tent of the proposed model Ada language course. The design was presented to

the HOLWG Advisory Committee on Ada Education and Training for comment end

approval before detailed course development was initiated. The design con-

sisted of an annotated course outline and discussion of the approach, philos-

ophy and rationale. Drafts of the course outline were distributed to other

** cognizant specialists for their suggestions and comments.

Task III - Course Development

LI 3

GIT/EES and ICS personnel developed the course materials required to

teach Ada. Considerable attention was paid to continuity and clarity of

examples and explanation and demonstration of abstract concepts and special

language features. The order in which subcomponents of this task took place

followed that of the outline produced in Task II. This task consumed the

majority of the project time and effort.

Task IV - Presentation of Course to Government Personnel

As part of developing and evaluating the model Ada language course, EES

presented the course twice to government personnel. These courses were

offered on the Georgia Tech campus and at Fort Belvoir, Virginia. During the

five days of the courses, instruction and workshops were conducted eight hours

per day.

Task V - Presentation and Reports

Additional oral presentations (IPRs) were given during the term of the

contract. A final report and briefing along with a copy of all teaching aids

developed as part of this contract are being provided to DARPA.

4

II.GENERAL METHODOLOGY

The development of the Ada Course was based upon an integrated approach

to Ada Instruction. it was determined that the form and content of the Ada

course must be consistent with the goals for which Ada was developed and the

methods used in this development. (See reference 5). It was understood that

the future success of the Ada programming language in helping to resolve the

DoD software problem would be frustrated if Ada itself were misused. There-

fore, it was considered critical to provide background not only on the mech-

anics of using Ada features but also on the rationale for including specific

features in Ada in the chosen form.

The course was designed to include the motivational and management level

information required by technical managers who have the responsibility to

make programming language decisions, to justify those decisions, to assure

acceptance and smooth implementation of a new prograimming language and to meet

project objectives within time and cost constraints. In addition, sufficient

technical specifics of the language such as its design philosophy, constructs

and syntax would be given to enable the technical manager to write non-trivial

programs in Ada and equip him to direct large scale software development in

Ada using its sophisticated features as they were intended.

In this way it was felt that the course would guide the participants from

the more traditional style of programming and software management to the

ther economie antrlailityincentivesdofntop-downtad structu Fr eram-e

modenoi phnlosopitablty reenuraed and sppdortead byruAda.eForoxame

ming, strong data typing and encapsulation would be emphasized.

Many features of Ada are new to most programmers or require usage that is

5

different from other languages. Some of the features may not be clear from

merely reading the Ada reference manual. Ada, because of its innovative

approach, demands new ways of thinking and provides new capabilities for

management. Many of the language innovations deserve careful presentation

and appropriate emphasis. insufficient explanation and motivation of certain

features would likely lead to their misuse or disuse by both programmners and

managers. Some unique Ada features and associated issues are listed below:

o strong typing -benefits gained through static checking
enhanced reliability
reduced cost of debugging
improved readibility

o subtypes -concept of dynamic constraints
o derived types -added security over subtypes
o enumeration types - improvements to readability
o array types - slices

- specification of indices with type marks
(dynamic arrays)

o string types - examples of flexible string usage supported by
Ada

o record types - protection for variants and their discriminants
provided to prevent aliasing (enhance relia-
bility)

o access types - explanation of static versus dynamic entities
and declaration as opposed to allocation

- lifetime of dynamic objects
- efficiency considerations

using access types instead of index computations
with array types
changing access-variable values versus moving
data

- dangers inherent with access types
problems which can occur when more than one

access variable refers to the same object
use of unintialized access variables

o type conversion - why no implicity coercion
- qualified expressions
- distinctions between explicit coercion an~d

resolution of ambiguities
o aggregates - concept of "value"

- positional end named notation in component
association

- distinct usage of discriminant constraints
o structured statements - disciplined and effective use

- choosing the appropriate statement for a given
situation

o transfer of control - responsible use of "exit," "goto," and "ret urn"
statements

6

-exceptions

definition.11 proper use
implications for verifiability
dangers - e.g. unwarranted assumptions

o assert statement - value in verifying program correctness
- use in validating

o formal parameter modes - security of static checking
- prevention of subtle program dependencies on the

particular method of parameter passing used
o overloading - clarification

*o visibility rules - visibility restrictions
*- interaction with separate compilation feature

o separate compilation - benefits
individually compile and test different units of
a program or software system
flexibility in the order of implementing units
minimization of cost of recompilation after

changes
o generics - providing proven, parameterizable components

for software construction
o data abstraction - in terms of packages and generics
o modules - physical and logical interfaces

- visible and private parts of specifications
- separation of the logical interface from the

implementation
- support of Top-Down design

It was considered to be especially important that managers know how

proper use of packages can make the lower levels of developing software

visible to them and allow them to control the interaction of lower program

units by controlling their interfaces. Also, the ability provided by the

"package feature to impose intelligible organization on both software systems

and software development operations must be made clear.

One of Ada's strong points is its facility for multitasking. Tradi-

tionally, multitasking has been implemented with relatively undisciplined, ad

hoc methods. Processes which are inherently parallel have been forced into

sequential formats due to the constraints and limitations of the programing

language ue~ed. Ada, however, provides a convenient mechanism to express

*- application situations and problem solutions in a form more closely repre-

senting their "real world" construct. For many, a fundamental introduction to

7

.1.. the concept of multitasking may be necessary. In addition an appreciation for

the security, simplicity and flexibility of task interaction provided by the

rendezvous feature of Ada should be provided.

In summary it was apparent that the traditional didactic method needed to

be supplemented vith new teaching aids more appropriate to Ada.

Model Course

Ada incorporates enough new programming language constructs and design

concepts such that techniques employed in teaching traditional programming

languages would be grossly inadequate for a satisfactory presentation of the

language. As the examples of the previous section demonstrate, Ada contains a

rich repertoire of new language features, many of which would be unfamiliar

even to highly experienced application programmers. Therefore, it was neces-

sary that innovative methods be developed if the material is to be presented

1) in a well organized, clear fashion and 2) in a sufficiently short period

such that programming managers can afford to set aside the time to attend a

course. It is believed that the demand for Ada training will be very signif-

icant in the near future and that numerous organizations, institutions and

* individuals will want to serve that need. All of these will be faced with the

requirement to develop teaching techniques suitable for the unique features

of Ada as well as to tailor the instruction to their specific intended audi-

ence.

The quality of these courses is important to the success of the Ada

language in meeting its stated objectives; however, most vehicles for course

quality control are not very feasible. For example DoD could control the

quality of Ada training and education by 1.) undertaking the instruction

responsibility or 2.) certifying courses developed and taught by others.

Neither of these options would be particularly attractive to an organization

[8

that is neither staffed nor chartered to perform these functions. Another

* possible vehicle for quality assurance is to provide a DoD approved model

* course to anyone wishing to develop a course in Ada. The model course was

intended to be a good exemplar for those wanting to develop their own innova-

tive teaching methods and a needed supplement for those who lack either the

time or desire to undertake such an endeavor. In either case an acceptable

foundation on which to build specialized courses would be available. EES

proposed to develop such a course in close interaction with the HOLWG Advisory

Coimmittee on Ada Education and Training. The product of this development

effort was to be a set of approved teaching materials and aids to be used in a

five day training course; a course outline, lecture notes and viewgraphs,

class hand-outs, sample problems and 15 hours of video taped lectures. All of

these materials would be delivered to DARPA and thereafter be in the public

domain.

In addition to the model course a set of realistic examples of Ada

programs would provide a valuable teaching aid. Many such examples were

obtained from Ada Test and Evaluation CT&E) participants and from others

developing Ada courses. Additional examples were developed as a result of

interactions with the Ada Education and Training Advisory Committee.

9

IV. RESULTS AND CONCLUSIONS

* The initial guidance to Georgia Tech for the development of the course

was provided on February 6, 1980 during a meeting of the Ada Education and

* Training Advisory Coimmittee (see Attachment I). The commnittee performed a

detailed review of the Georgia Tech model course and agreed that the course

was veil into the design phase. (These early efforts were financed by Georgia

Tech as it was felt that such an important endeavor was worthy of our sup-

port.) Several recoimmendations were made, and it was agreed that Georgia Tech

would provide a new syllabus at the next level of detail with supporting words

describing the proposed examples and approach. Although it was agreed that

top-down decomposition would be an excellent way to introduce concepts, it was

generally agreed that the participants first needed an understanding of the

basic facilities and control structures. It also appeared desirable that a

set of machine readable, documented examples be collected. finally, it was

agreed that the success of courses would be enhanced by the availability of a

translator, even if inefficient, so that students can get a few programs

running.

An Ada Model Course review was held at Georgia Tech on April 28, 1980.

During this meeting, representatives from the Ada Education and Training

* Committee were presented with a revised course outline and also reviewed

several proposed examples intended for use during the course. As a result of

this meeting and ensuing discussion, further changes were made to the course

material.

Another training meeting was held in Washington, D. C. on May 13, 1980.

The two primary instructors and course material developers for Georgia Tech

1~ 10

I.]
attended this meeting. The material was generally well received, and it was

agreed that the content and direction of the course was appropriate.

Shortly after this meeting, Georgia Tech was asked by the sponsor to

consider moving the first of the two courses for DoD personnel from the

planned location at Georgia Tech to Fort Belvoir, Virginia. The stated reason

for this move was the shortage of travel funds in DoD. The sponsor was

advised that the funds remaining in the project could not allow for that move

and also cover the cost of developing the planned videotape version of the

course. The sponsor decided to defer development of the videotape version of

the course. A contract modification was subsequently issued cancelling the

videotape effort and directing that the first of the two DoD presentations be

moved to Fort Belvoir, Virginia.

The first of the two contract courses was presented at Fort Belvoir,

Virginia on 23-27 June 1980. One of the secondary purposes of the presenta-

tion was to provide a live audience for field testing the material. Most of

this aim was accomplished during the weeks' presentation. Many of the com-

ments were constructive and enabled Georgia Tech to provide for changes to the

material. Georgia Tech feels that the course could have been improved if a

software engineering approach had been used in its development.

Version control proved to be a major problem with the materials, espe-

cially since the language was not stable during the development phase and

Georgia Tech was constantly being required to react to changes. This had

considerable impact on costs, and funds for the remaining development ran out

before final preparation of the course material had been completed.

The second of the two contract courses was presented at Georgia Tech from

July 7-11 1980. The course was attended by 13 DoD personnel including the

"- II

members of the Ada Education and Training Cosmmittee. In general, the course

vent veil and participants vere receptive to the material and methodology. A

comment session vas conducted on July 11 and the coments were, for the most

part, quite positive. The attendees vere generally satisfied with the course

handouts and the visual aids. Most students felt, that as an overview for

managers, the course contained too much detail and too much programming.

Although the attendees vere purported to be software managers, they professed

not to be interested in the programming details. (This is not consistent with

our view as to vhat softvare managers need to know to manage a large software

project and is a source of some concern if this is a prevalent view throughout

DoD.)

From the staff's viewpoint, Georgia Tech felt that the material was

presented at the proper level for industry technical managers. The reordering

of the material resulting from the comments obtained from the first presenta-

tion at Fort Belvoir appeared to be quite successful. The instructors were

more comfortable with the material and felt that the presentation vent more

smoothly as a result of the changes. The committee representative indicated

that he was pleased with the course and felt it satisfied most of his needs.

He also recognized that it was a management courae and felt that the level and

thrust of the presentation was quite appropriate.

On July 23, 1980, DARPA was provided with a then current set of all

training materials. Constant changes and delays in reception of the final

reference manual had severe impact on cost and schedule. Georgia Tech

received the final copy of the reference manual in August 1980 and made

applicable changes to the course material. Copies of all deliverables were

provided to DARPA in September-October 1980.

12

V. RECOMM4ENDATIONS

As ye have not been provided with the results of the review of the course

material, we are unable to comment on any inputs received from the reviewers.

However, based upon our experience in the development and presentation of the

course to two DoD classes and two additional sessions under the auspices of

the Department of Continuing Education, the following recommendations are

provided:

a. Our experience in the development and presentation of the

course to two DoD and two Continuing Education classes have
shown that the course approach was valid. Therefore, future

courses in the teaching of Ada to DoD personnel should use this
course as a model.

b. The availability of a translator would have greatly enhanced

the value of the course. For an executive overview or manager
course it would have been an invaluable aid to understanding.

For a programmer's course a translator would be a necessity.
Therefore, all future courses should include the use of some

sort of translator. The NYU translator and interpreter will
shortly be available from the U. S. Army and should be consid-

ered as a vehicle to satisfy this requirement.

C. The interaction with the Ada Education and Training Committee

was very useful and should be an element in the development of
any future Ada courses.

d. DoD should continue to explore the possibility of developing a

videotaped version of the course. User agencies/activities
could then supplement such a standard package with material

germane to their own specific requirements.

e. Georgia Tech spent considerable in-house time and effort in

the investigation of the use of color graphics for course
visuals. It is felt that this methodology offers significant

promise and future courses should consider its use, providing

the costs can be kept to a reasonable level.

f. A set of realistic examples of Ada programs would provide an

invaluable teaching aid. The development of such examples
should continue to be encouraged by the Ada Joint ProjectI
Office. These examples should be provided to interested user

agencies at their request.

13

- --- -

VI. REFERENCES

1. Unsolicited Proposal No. CS-SRD-0005-RI, "Ada Education fcr Technical

Managers," November 5, 1979.

2. "Preliminary Ada Reference Manual," ACM SigPlan Notices, Vol. 14,

No. 6, June 1979, Part A.

3. "Rationale for the Design of the Ada Programming Language," ACM SigPlan

Notices, Vol. 14, No. 6, June 1979, Part B.

4. "Reference Manual for the Ada Programming Language," US Department

of Defense, July 1980 (Reprinted, November 1980).

5. "MCF, Part V: Software for Embedded Computers," Military Electronics/
Countermeasures, July 1979, by Edith Martin and Edward Lieblein.

6. "Proceedings of the Ada Debut," U. S. Department of Defense, Advanced

Research Projects Agency, September 1980.

7. "Proceedings of the ACM-SIGPLAN Symposium on the Ada Programming Language,"

ACM SigPlan Notices, Vol. 15, No. 11, November 1980.

7

14

COURSE MATERIAL

ADA EDUCATION
FOR

TECHNICAL MANAGERS

TABLE OF CONTENTS

Introduction to Ada

Example I - INTRODUCTORY EXAMPLE
Program structure, lexical units, declarations,
basic statements

Example II - PROCEDURES AND FUNCTIONS
Declaration and parameter modes, blocks, visibility,
type declarations, statements, type equivalence, operators
and operands

Example III - RECORD HANDLING
Packages, records and record aggregates, case
statement, input-output, program structure,
visibility, separate compilation

Example IV - ENUMERATION TYPES
Enumeration types, array aggregates, named
parameter association

Example V - OVERLOADING AND EXCEPTIONS
Overloading, exceptions, packages and exceptions

Example VI - LIST PROCESSING
Access types, data abstraction, generics,
discriminants, variant records

Example VII - FUNDAMENTALS OF TASKING
Task concepts

Example VIII - TASK INTERACTIONS
Entries, accept statements, rendezvous, task
attributes, select statements

Case Study I - PROGRAM DESIGN USING PACKAGES
A Text Formatter

Case Study II - USING TASKS FOR SIMULATION
Telephone Switching Simulation

Case Study III - REAL TIME CONTROL
HELBAT BIFF

Summary

I.

I
DOD'S ADA COMPARED TO PRESENT MILITARY STANDARD HOLS

A LOOK AT NEW CAPABILITIES*

Linda S. Scheer
Michael G. McClimens

Systems Consultants, Inc.
Dayton, Ohio

1.0 Abstract All tour languages encourage the use of

1astructured programming control constructs.

The emerging DoD programming language. Ada. Ada and J73 provide strong typing (i.e.
promises to a tgrouping data or like value ranges and
capabilities formerly considered outside the scope operations under specific type raMes)
of an HOL. Ada is PASCAL-like in its design and which allows significant rellatility
includes such modern programming concepts as improvements in code.
strong data typing, blocking and hierarchical
exception handling. In addition to the e Although Ada is top rated according to
capabilities found in modern HOLs, Ada includes features. it will not be easy to learn and
some relatively new areas: real time processing, it presents some difficulties to compiler
libraries, and assertions. implementors.

This paper compares the present military
standard languages, JOVIAL J73, CI15-2 and FORTRAN, 3.0 History or High Order Languages
tc Ada in seven areas: design criteria, general
syntax, data typing, control, functions, real-time HOLs were originally developed in the late
processing, and other advanced techniques. This i ties to present mathematical elgortts to a
corpar~son shows which areas are new to the HOL fifte tORpresen the alist acomputer. FORTRAN, one of the earliest, was

arena, and how modern programming techniques have designed expressly to translate numeric formj:as.
been used to increase the applicability and ALGOL was somewhat more elegant in its approacn,
reliat.l4ty of traditional HOL areas, but again its primary purpose was the express:or

of mathematical algor;thms. The Air Force

subsequently developed JOVIAL by ta:lorxng much of
2.0 H L Feature Study ALGOL to the needs of conrand and control systcms.

Similarly, the Navy developed CKS-2 because It
The HOL Feature Study compares several HOLs needed more capability than the conventicna;

at a functional level and obtains their relative languages possessed.
ranking. Sections 3.0 and 4.0 give the basis for
our selection of the four HOLs analyzed in the These early languages grew as the conputer
feature study; Section 5.0 explains the technology grew. The old familiar languages were
methodology used in the feature study; and modified and extended to meet new situations.
Section 6.0 analyzes the results of these scores, often situations not anticipated in the original
The ?rimary conclusions of the feature study are language. COBOL was defined to address the

as follows: problems of business data processing where
mathematics is limited to financial arean and

0 CMS-2, JOVIAL, and Ada fully support the there is a stronger need for manipuat:cr and
functional requ:rements of mont military display of character data. PL/I was defined in
software systems. the mid 60's in an attempt to bridge the

scientific and business application areas. As

* FORTRAN 77 supports many types of such it included the major features of COBOL as

processing but is missing low-level 1/O, well as those of FORTRAN, ALGOL, and JOVIAL.
partial word data manipulation, and
tightly packed records. All six of theme major programmInF languages

were d'enFnd primarily an Iml,rov.mvim it. p(wer
0 J73 and Ada contaIn siri'icant and cap;ut!llty over existing laziuagr-. Iltef'Its

improvements over CMS-2 and FORTkAN In the to prcgrammers were derived from the continuous
areas of reliability and maintainability, addition of new features.

Not until the definition or PAfCA[in 1971
._ _was a language formulated whose primary design

*This work was sponsored by the Air Force Avionics goal was to aid the programmer in developing his
Laboratory under contract F33615-78-C-166. software. It includes a rich set of data typesand allows only a small set of control structures

539

supioorting structured programs. The advent or structured prurravor lr, and ha- hA'l a riYrc fr(Ily

rACrL F'hlresfntS tilt pol nt In ,',m;utrr sei enre foreirttid n(oir(' Ji l-t thln FOI10 h.. Adli t ior.

when sufficient understandin. of HOL problems and for Comnihd ari control !;yntmn include l(.-level

beneficial 110L techniquea had been aiccumulated to rather than ilrt-Ievcl 1/0, lovica I docini on

address the proper engincering or ttier languagr,. making based on flar, and the capability to build

Tine emphasis nhlfted from expre:in'in* the problem larFc ryntemn con3snting of several independently

for the machine to expressing the problem for the compiled modulen.

programmer. Ada builds the philosophy of PASCAL

into a language powerful enough to support large Like FORTRAN, JOVIAL also suffered from the

software systems. proliferation of dialects and minor differences
between implementations. In 1967, a version of
JOVIAL J3 wa established by the Air Force as its

4.O High Order Languages Selected standard programming language for command and
control systems. In 1972 a committee report was

The evolution and major characteristics of accepted to modernize J3. The new dialect, J73/1,

the languages selected for the HOL Feature Study was adopted as the official Air Force standard,

can be discussed against this general background. but a JOVIAL implementation called J3b was

FORTRAN, JOVIAL, and CMS-2, three widely used developed based upon a preliminary report from the

languages from the DoD list or approved high order modernization committee. Due to schvdule

languages, were originally selected for this considerations, J3B was used on several

study. When the Dod common high order language operational flight programs (FlC and B-1) and

effort remained on schedule and a single language underwent further modifications picking up strong

design for Ada was chosen in May, 1979, it was typing rules and tighter control of

decided to also evaluate Ada to keep the HOL inter-compilation unit interfaces, in late 1978,

Feature Study at the state of the art. the Air Force undertook an effort to standardize
on a single dialect of JOVIAL by incorporating the

The next step after selecting the four proven capabilities of J3B into the otherwise more

languages was to choose the exact dialect for each modern J73/I. The result or this effort is known.

language. Each language presented its own special as J73 and contains improvements over both J73/1
problems. Standardization has been a major and J3B. The MIL-STD-1569A definition of JOVIAL

problem in the use of high order languages since (J73) (Ref.4) has become the official Air Force
the:r inception. Throughout their h:story standard and has been selected for evaluation
proliferation of dialects and language derivations under the HO. feature study.

have occurred in spite of on-go:ng standardization
efforts. Recently these standardization efforts The Navy has taken a much stronger approach

have become increasingly stronger within the to the control and standardization of their
Department of Defense and are just now beginning language, C11-2. It is based upon the Con;:ler
to exhibit results. System-I (CS-I) first used by the NAVY c;rca 19S&.

When it was decided in 196t to upgrade CS-I, the

Altrough a standard for FOR7KAN IV was task of coordinating the effort was given to w .at

estatlished in 1966, most current FORTRAN is now the Fleet Combat Direction Systers Support

compilers support a superset of FORTRAN IV. For Activity (FCDSSA). FCDSSA has complete control

exa!,qle, the extensions to FORTRAN supported by over the generation and distribut:cn of all CM.S-Z

these compilers incorporate mere modern compilers with:n the Navy. In upFradinF CS-I. it

structuring techniques, reduce the rigidity of the was decIded to include the best features of

fixed formats for statements and comments, and existing languages while maintaining as mich

provide character manipulation facilities. compatibility as possible with existing CS-1

Although there is not a consensus in the selection programs. As a result CMS-2 includes the features

or the implementation or these extensions among of structured programming and the ability to

the various compilers, it would be unrealistic to specify packed tables for Interfacing with

limit the evaluation of FORTRAN to the 10 year old hardware defined data structures, but it also

standard FORTRAN IV sutset. In 1977, the ANSI contains more primitive constructs which are often

standard for FORTRAN was updated to Include redundant. (Ref. 5)

several of the more common extensions such as
improved 1/0, blocked IF-THEN-ELSE, character In addition to rigorously controlling the

string manipulations and wider use of expressions CKS-2 language, the Navy has also standardized on

in place of integers. However, few compilers that the processors to be used in its systems. The
upport FORTRAN 77 are currently available In AN/UYK-7 is a large mainframe and the two

order to reflect these Improvements, the FORTRAN mini-computep families used are the AN.ItYf-P(and

feature study analynis is based on FORTRAN 77 the CP-62. Thus while CMn-2Y represents a

(Ref.2) and F4P (Re.3), the FCRTHAN compiler for significant update to CMn-2, CM,-P1 1q r.,re!y the

PDP-111s, which is representative of commonly tailoring of CMS-?2 to the AN/UYK-P0 processor.

available extended FORTRAN compilers. Although CMS-2 is fairly machine independent,
CMS-2M documentation gives the ir prerion of

The JOVIAL language has been used by the Air machine dependency because of the processor

Force since 1959. It is a derivative of ALGOL and standardization and the strong hardware/software

was specifically modified to support command and association. Because it Is the mcst recent

control systems. As an ALGOL derivative It language definition. CKS-2M, as defined in the

contains the blocked structures necessary .,r M-5045 CMS-2Y (20) User Manual (Ref.6), was chosen
for the feature study analysis.

540O

__ 1 [[] 'l/nl~F Illll

I
Ilril ike tL1: othvr thre. lanpu-pee, Ada har a G.0 Vo'Iturc .t,1ly I",i :tn

v*-ry :ehrt hi tory. It I Is tIe resul It ur a
Inten.,ive effort to standardize on a sln.Ie Hy quant) fy ir tt scorlhr a" Mich as

einua,,e for embedded computer :.yatemu tihrouehcut possible arid selecting specific scoring criteria,
POD. The HiCh Order Languages Working Group much or the IIOL feature study effort was
tIIOLWG) was organized in 1975. In reviewing the accompl inhd by the Compariron approach. With
existing languages, the 1IOLWC round that no most featurva, dvternnng the najrter or points a
existing language satisfactorily met their broad particular Janfualre should receive was

range of requirements. The HOLWG then began straightforward. Even though languages were
successively refining the lanpuage requirements scored by more than one reviewer, general
over a four year period. This process was highly agreement occurred on the first pars and minor
interactive, receiving inputs from numerous differences were quickly resolved. Each reature
contractors as well as the individual military was resolved into a number of scoring criteria
branches. Four preliminary PASCAL-like language which were evaluated independently. For example,
designs were evaluated and the language design the "Bit Strings" feature was broker _nto
narrowed to two candidates, called RED (Ref.7) and assignment; equivalence or non-eqj:valence;
GREEN (Ref.8). The two design teams modified complement, intersection, union and symmetric
these languages according to the final requirement difference; and set membership (sutstrings).
specifications found in the STEELMAN (Ref.9) These were each assigned a maximu value or 2 or 3
document. As a result of an intensive evaluation and the languages were each scored on that range
by both contractors and military teams, the GREEN for that criterion. These results were suimed to
language design for Ada was selected in May of give the final score for that feature.
1979. This will undergo a test and evaluation

period during which tests was run on an Ada The remainder of this section correlates the
simulator. Final revisions to the Ada language resulting feature study scores with the
definition :will be made in early 1980. The Ada conclusions stated earhier in the irtrodjton tc
language as defined by the March 15 Reference Section 2.C. lalbes I anO 11 provide a st;--.:ry o'
Manual for the CREEN Programming Language will be the raw scores and a grouping of the ind:vidual
evaluated under the HOL feature study. feature scores into more general categories.

The totals from Table I give an ordering of
5.0 HOL Feature Study Methodology the power of the four languages studied. The

ordering (from weakest to strongest: FC!1TRAI,
Tne common HOL language effort has resulted CMS-2, J73, Ada) is not surprising. FOFThAN :s

in another major contribution to the HOL Feature the oldest langjage and of the four is the orly
Study. The set of features used to compare one not specifically dersgred for m:litary
FORThAN, JOVIAL J73, CMS-2M, and Ada is based upon systems. Ada rprenents the mont recent 1a', .~e
the STEELMAN language requirements. S7EELMAN design thecy and had the STEEL'"AN requ~rements as
represents the culrznation of four years of a guideline. Tne higher score of J7. over Cl.-2
intensive discussion and interaction of literally reflects the inclusion of strcneer typirc,
thousands of high order language users and exception handling, and stricter parameter
experts. We have reviewed these requirements, matching in the recent J73 upgrade.
selecting 6 peneral goals and Lit specific language
featurer required by embedded computer systems. Differences between the lan..ages are

explained in greater deta:l ir. fect".1r.s t.I thru
Project members independently weifhted the 52 6.4, which cover each language ird:vidually.

features from one to ten according to the
feature's importance with respect to general Before discussing the language differences,
programming requirements. After discussion, each we should point out the comnonality among the
feature was assigned a general weight by group languages. Wit the revirons made in the 1977
consensus. Tatle I lists the 52 features, their version of FORPTAN, all four la j.fes now su,-pnrt
associated paragraphs in STEELMAN and their 3tructj-ed profrar.:n g. This is ind:cated by the
maximjm programring weights. relatively higt. subtotals for the COiT7ROL category

In Table II. The point is further made that
Having thus arrived at a maximum score for FORTRAN and CMS-2 were penalized primarily for the

each feature, specific scoring criteria were lack of short circuiting (not really part of

developed to further quantify the analysis and to structured programming) and minor shortcomings
facilitate consistency across language with respect to WHILE loops and loop EXITS.
evaluations. The scoring criteria were each (Refer to Features 23 to 32, Table I.)
anb0ined relative values so that their relative
Importance was maintained and their totals equaled In fact, if the scores were adJusted to

the maximum allotted to the feature. Finally, disr(gard strong typing, real time processing,
independent evaluations were performed on Ada, exception handling, and separate translation
J73, CMS-2 and FORTRAN. racilities, the scores for all four larzgi.gs

would be relatively consistent. Tt.is is not to
say that these features are rt i;,,rtant. They
represent the major improvements made by Ada and

541

FE;ATURE nTEELMAN A[DA V~ol, J73 CM:; MAX

I.Reliability 1A.8 10 5 8 5 1f)

DESIGN 2.Maintainability IC 8 5 8 6 10
CRITERIA 3.Erriciency ID 5 6 6 6 9

4.Simplicity IE 6 6 5 2 7
5.Machine Independence IC 10 9 7 5 10
6.Complete Definition IN 10 Ai 7 8 10

7.General Syntax 2A,B,D 7 6. 6 14 8
GENERAL B.Syntactic Extensions 2C 5 5 3 3 5
SYNTAX 9.1dentifiers 2E,F 6 2 6 3 7

I0.Literals 2G.H 8 7 8 8 8
I1.Comments 21 9 8 10 10 10

12.Strong Typing 3A,B.D 8 1 14 3 8
13.Type Definitions 3C.D 8 0 5 0 8
14.Numeric Types 31AD-H 9 7 10 10 10
15.Numeric Operations 31B,C 10 i0 10 8 10

DATA 16.Enumeration Types 32A,B 5 0 14 0 5
TYPING 17.Boolean Type 3C 5 3 5 '4 5

18.Character Types 32D 8 5 8 5 8
19.Arrays 33A-E 10 7 8 7 10
20.Records 33F-i B 0 5 14 8
21.Indirect Types 331,J 5 0 3 2 5
22.Bit Strings 314A,B 5 2 5 3 5
23.Encapsulation 35AB 5 0 2 0 5
214.Scoping 35C,5C,G.7C 10 3 9 6 10
25.Declarations 5A,BD,F 10 14 10 9 10
?6.Initial Values 5E 5 5 14 5 5
27.Expressions 4A-G 10 9 9 9 10

?8.Control Structures 6A,B 8 6 7 6 8
CONTROL 29.Conditional Control 6A,C 10 6 10 10 10

30.lterative Control 6A,E 9 14 10 6 10
31.Explicit Transfer 6A,G 8 8 7 5 8
32.Short Circuiting 6L) 5 0 5 0 5

33.Procedure3 7AD 10 9 9 7 10
34.Recursion 7B 5 0 5 0 5

FUNCTIONS 35.Pararneter Passing 7F-H 10 1 9 6 10
1/0 36.Aliasing 71 5 0 3 14 5

37.Low Level I/0 BAE 5 0 14 3 5
38.Hi Level 1/0 8BP,D,F 8 9 0 0 9

39.Parallel Processing 9A,B,H,I,J 14 0 0 0 5
40.Mutual Exclusion 9C 5 0 0 0 5

REAL 41.Scheduling 90 14 0 0 0 5
TIME 42.Peal Time 9E 5 0 1 1 5
PROCESSING 43.Interrupts -- 5 0 3 0 5

41 .Async. Termination 9C 5 0 0 0 5

45.Exceptio' Handling IOA-E.G 9 0 5 0 10
46.Assertions 5F 3 1 1 0 5
47.Data Representation 11A 8 0 6 6 8

OTHER 48.Lang. Interface 11E 10 14 10 14 13
TECHNIQUES 49.Optimizations 11C,D,F 8 1 5 1 8

S0.Libraries 12A 6 2 7 8 9
51.Separate Trans. 1?Zl 8 7 7 8 8
52.Gerieric Defjnitlons 120 5 0 1 0 5

LTOTALS 373 177 290 210 3914

Table 1. Functional Comparisons

542

to a lesser extent J73. The point to be made Is less powerful; some data types are either
that the remaining features would represent missiog, as in th-. case or enumeration types, or
functional capabilities sufficient for many are restricted, as In the case or bit strings;
problems. All four languages provide these and the user is not allowed to group data by
functions with only minor improvements made in J73 defining his own types. These features are
and Ada. The additions made by these languages desirable to facilitate code reliability.
don't provide new capabilities, but rather, allow
the programmer to state the solution in a more 6.3 JOVIAL (W73)
precise, reliable, and straightforward manner.
These characteristics are precisely those that Table I shows thet J73 consistently outscores
will aid maintenance efforts and reduce life cycle CKS-2. The number and types of constructs found
costs. in J73 have been greatly condensed without losing

any of the functional capability found in CMS-2.
6.1 FORTRAN Beyond CKS-2, J73 has included the basis for

strong typing, fundamental exception handling,
Although FORTRAN contains the basic tighter control of functions and procedures, and

functional capabilities required by many problems, slight improvements in control structures. The
FORTRAN programmers would encounter difficulties strong typing and exception handling capabilities
in several areas: low-level I/O, partial word of J73 were adopted-from early work on Ada and as
data, and tightly packed records. such are not nearly as well developed as those in

Ada. The four areas mentioned here account for
Features 37 and 48 are those most pertinent most of the 80 point difference between J73 and

to low-level I/O. As can be seen, FORTRAN CMS-2. The overall effect of these features is an
contains no provisions for explicitly specifying increase in reliability and maintainability as
low-level I/O instructions. These must be indicated in features 1 and 2 of the General
implemented :as calls to assembly language Design Criteria section. (Table I)
routines. Since I/O operations normally entail
only a single machine instruction, subroutine J73's major improvements in control
linkage overheads of 3 to 4 words represent structures are loop EXITS and short circuiting of
significant increases. A much greater problem conditional expressions. Loop EXITS provide a
occurs on time critical I/O operations (e.g., controlled alternative to explicit GO TO's or
disable interrupts) which can't allow any match flags for exiting Iterative loops upon the
intervening overhead instructions, occurrence of desired conditions. Snort

circuiting allows the use of logical properties to

FORTRAN is unable to specify data items optimize complex decisions. For example, the

requiring less than a full word or byte of memory, decision
as is indicated by features 47, 22 and 16. In IF A:O or B=O or (C:O and D=1)
order to access specific bit strings within a is known to be true as soon as A is found to equal
word, the programmer must use explicit masking and zero, and the remaining conditions need not be
shifting operations. In addition to being error checked.
prone, this makes code less understandable because
descriptive names cannot be associated with J73 introduces several improverents to
specific bits. functions and procedures. Strong parameter type

checking is supported across separate comp:lation,
6.2 CPS-2 as well as within compilation units. Machine

specific functions and procedures allow a well
CMS-2 corrects most shortcomings found in controlled means of introducing low-level I/O.

FORTRAN. Specified tables my contain items of J73 compilers will recognize a special set of what

different types and may assign exact sizes and bit look like procedure or functzon calls as

positions to individual items. Using these requesting inline generation or mac!4ne specific

features, the CMS-2 programmer can access each instructions. Recursive procedures are also
field by an appropriate variable name. Low-level supported. These improvements to functions and

I/0 in CM.S-2 is accomplished by allowing insertion procedures allow compile-time error detection in

of assembly language directly between CMS-2 this area and result in more reliable code.
statements. Although these features are not
controlled as well as the corresponding features Another J73 improvement related to procedures

in Ada and J73, they allow many military software and functions is the abort capability covered in
systems to be well represented in CM4-2. feature 45. An alternate return may be specified

on procedure calls. Execution of the ABORT

The major shortcomings in CMS-2 are Its lack statement within called procedures will
of strong typing and the presence of outdated subsequently return control to the most recently

features. This second characteristic was caused specified alternate return. This provides an

by the decision to maintain downward compatibility efficient means of handling error conditions
of compilers. It results in special cases and without destroying the single-entry-single-exit
duplicated features throughout CKS-2. The benefits of structured programming.
150-plus keywords found in CAS-2 are indicative of
its complexity for both Implementation and The most important reliability improvements

. maintenance programmers. Secondly, CS-2 is in J73 are obtained from its strong typing
comparatively weak in data typing. Scoping is features. This is reflected by J73's 26 point

i.5.

I-
nereani,- over CM:;-' in thf Dat.a Tyline. ar'ra of un a|iliar tn a larg, m..vment of prorammcri.

iabhl II. F.ramprnt ion tyI'.t are prnv de'd t Whi le providirip. many henefiti n0 Lhe reatur(.- willI.ianociate m:il I Ii tLn or v;alie', with pieular require a 1.arnlhr.i pro(''A. They aI so plre:teilt new

varl.bilen. J73 also requires explieit conr'rrion Imp] emntation profl, ee. to rompiler dnipr rers.

betwvien data or differing typen and rorces pointer Certainly. additional complexity should be avoided
variables to always refer to the same kind of in any change" mde during the Ads test and
tattle. User defined types arc allowed to Identify evaluation procens and the importance or initial

items with similar characteristics. These compiler implementation efforts should not be

constructs encourage better system design due to underestimated.
better data definition and partitioning. The
Increased data definitions also allow the compiler

to more completely identify incorrect variable ADA FOR J73 CMZ MAX

usages.

6.4 Ada Design Criteria 19 35 1I 3? 56
General Syntax 35 ?8 33 28 38
Data Typing 111 47 92 66 112

Ada takes the benefits found in J73's strong Control 50 33 48 36 51

typing one step further. Strong data typing is Functions & 1/0 43 19 30 20 44
the fundamental characteristic of Ada. In Real Time Processipg 28 0 i 1 30

addition to user definable types, Ada provides Other Techniques 57 15 42 27 63

sub-types to specify absolute value ranges which
are automatically checked across all assignments. Totals 373 177 290 210 394

Moreover, most features in Ada contain nuances
which reflect the assumption of very strong data Table 11. Summary Of Results

typing. Overloading of procedures, encapsulation,
and generic program units are examples or new
concepts in Ada highly associated with strong
typing. The impact of strong typing in Ada is so

dominant as to force a new style of programming. References

This new approach greatly enhances the production

of reliable code. These capabilities are 1. Sammet, Jean E. Programming Languages:

indicated by Ada's high scores in the Design History and Fundamentals. Prentice Hall, 1969.

Criteria and Data Typing areas of Table I.
2. Katzan, Harry Jr. Fortran 77. Van

While providing this radical departure from Nostrand Reinhold, 1978.

the other three languages, Ada consistently builds
upon their proven capabilities. Comparing the Ada 3. PDP-I1 FORTRAN Language Reference Manual.

scores in Table I with those of the second place Digital Equipment Corporation. Copyright 1975.

language, J73, we find 35 features in which Ada
receives a higher score and only 5 in which it 4. MIL-STD-1589A Military Standard Jovial

scores lower. In these five features the Ada (J73). USAF. March, 1979.

score is lower by only a single point in each
case. 5. N-1155 A Brief History of CMS-2

Development. Fleet Combat Direction Systems

The second area of significant improvement in Support Activity. September, 1977.
Ada is the inclusion of real time processinC

constructs. In this section of Table II, Ada 6. M-5045 C3-2Y Programmers Reference

receives almost a full score while the other Manual for the AN/UYK-20 Computer. Fleet Combat

languages receive almost no points at all. The Direction Systems Support Activity. September,

Ada language contains the fundamentals of a real 1977.

time executive. Presently such executives are
implemented via several routines particular to 7. Red Language Reference Manual.

each operating system. In Ada, desired executive Intermetrics. March, 1979.

control and synchronization of independant tasks
can be obtained by proper selection of built-in 8. Green Language Reference Manual.

language constructs. Incorporation of these Honeywell Bull. March, 1979.

features directly in the language not only reduces

implementation efforts but also establishes A 9. Steelman Requirements for High Order

consistent approach across systems. Computer Programming Languages. Department of
Defense. June 1978.

Ada's score of 373 out of a possible 39h

points clearly marks it as the most desirable

language choice. There are a few reservations,

however, concerning Ads due to Its early stage of

development. Ada has just been defined as or

March, 1979, and is still undergoing refinement.

No Ada compiler has yet been implemented. As we

have discussed above, Ada imposes a new style of
HOL programming. It includes many new features

544

An Introduction to Ada

Course Outline

FIRST DAY

Overview of Ada
History of Ada, comparison to present military standard
languages, introduction to Ada Features

Example I - Introductory Example
Program structure, lexical units, declarations, basic
statements

Example II - Procedures and Functions
Declaration and parameter modes, blocks, visibility, type
declarations, statements, type equivalence, operators and
operands

SECOND DAY

Example III - Record Handling
Records and record aggregates, packages, case statement,
input-output, program structure, visibility, separate
comnpil1a tion

Example IV - Enumeration Types
Enumeration Types, Array aggregates, named parameter
association

Case Study I - Program Design Using Packages

THIRD DAY

Example V - Overloading and Exceptions
Overloading, exceptions, exceptions in packages

Example VI - List Processing
Access types, data abstraction, generics, discriminants,
variant records

Case Study II - Real Time Control - overview

FOURTH DAY

Example VII - Fundamentals of Tasking
Task concepts

Example VIII - Task Interactions
Entries, accept statements, rendezvous, task attributes,
select statements

Case Study II - Real Time Control -Implementation

V ~Summar y

T ADA INTRODUCTION

SYNTAX
-designed for readability

DECLARATIONS and TYPES
- factorization of properties, maintainability
- abstraction, hiding of implementation details
- reliability, due to checking
- floating point and fixed point, portability
- access types, utility and security

STATEMENTS
*1- assignment, iteration, selection, transfer

- uniformity of syntax (comb structure)
- generally as simple as possible

(e.g., iteration control)

SUBPROGRAMS
- procedures and functions
- logically described parameter modes

(as opposed to definition by
implementation description)

- overloading

PACKAGES
- modularity and abstraction
- structuring for complex programs
- hiding of implemen'-ation, maintainability
- major uses:

" named collections of declarations
" groups of related subprograms
" encapsulated data types

LIBRARIES
_separate compilation

- generics

11 - program development environment

TASKING
- can be done completely with Ada features
- single concept for intertask communication

and synchronization
- interface with external devices
- designed for efficient implementation

EXCEPTION HANDLING
- for reliability of real-time systems
- standard vs. user-defined exceptions
- meant mainly for handling errors

(rather than as a general programming
technique)

MACHINE DEPENDENCIES
- representation specifications
- interface with other languages
- low level I/0

1.

Ada IS DESIGNED FOR

* WRITING LARGE PROGRAMS

Ada HAS FEATURES TO ALLOW

SUITABLE EXTENSIONS FOR

A PARTICULAR APPLICATION

Ada IS A DESIGN LANGUAGE

1.

EXAMPLE I

INTRODUCTORY EXAMPLE

1.10

I OBJECTIVES

I. Program Structure

Lexical Units

Declarations

Basic Statements

L 1.110

!

LOGICAL STRUCTURE

with TEXT 10;

procedure MIN MAXSUM is

i i
I declarative I

part I

beg in

- I
I sequence of I
I statements I

end MINMAX SUM;

1.120

TEXTUAL STRUCTURE

with TEXT_10;

procedure MIN MAX-SUM is

begin

0

for . . . loop

if . the

elif . . . then

end if;

end loop;

end MIN MAX SUM;

1.130

I
A COMPLETE PROGRAM

with TEXT 10;
procedure MINMAXSUM is

-- This program reads a list of one or more integers and
-- reports the minimum, maximum, and sum of them. The
-- program expects this list to be preceded by an integer
-- value giving the number of integers in the list.

use TEXT 10;

ITEM : INTEGER;
MAXIMUM : INTEGER;
MINIMUM : INTEGER;
SUM : INTEGER;NUMBEROF ITEMS : INTEGER range l..INTEGER'LAST;

begin

GET(NUMBEROFITEMS); -- Read the length of the list
-- Assume NUMBER OF ITEMS >= 1

GET (ITEM);
MAXIMUM ITEM;
MINIMUM := ITEM;
SUM := ITEM;

for N in 2..NUMBEROFITEMS loop -- Loop variable is
-- declared automatically
-- Its scope is range of
-- loop statement

GET (ITEM);

if ITEM > MAXIMUM then
MAXIMUM := ITEM;

elsif ITEM < MINIMUM then
MINIMUM := ITEM;

end if;

SUM :- SUM + ITEM;

end loop;

PUT(" MAXIMUM IS "); PUT(MAXIMUM); NEW LINE;
PUT(" MINIMUM IS "); PUT(MINIMUM); NEW LINE;
PUT(" SUM IS "); PUT(SUM); NEW LINE;

end MINMAXSUM;

1.140

I

LEXICAL UNITS

IDENTIFIERS

RESERVED WORDS

NUMBERS

STRINGS

DELIMITERS

any number of spaces between lexical units

at least one space between adjacent identifiers

or numbers

1.150

L!
IDENTIFIERS

MIN MAX SUM -- underscore is significant

MINMAXSUM -- not the same as MIN MAX SUM

ITEM

NUMBEROFITEMS -- no distinction made

Number OfItems -- between upper and

-- lower case

Size_30 -- identifier may include digits

-- Composed of letters, digits, and

-- isolated underscores

-- First character must be a letter

rLast character must be a letter

-- or a digit

-- All characters are significant;

-- length of identifier restricted

-- only by length of line

1.160

I
RESERVED WORDS

procedure is

beg in

end

if then else elsif

for in loop

(not a complete list)

Relatively small set of reserved words which must be
memori zed.

Predefined identifiers (attributes) may be used as regular
identifiers.

1.170

[PREDEFINED TYPES

INTEGER

FLOAT

BOOLEAN •

CHARACTER

Part of pre-defined environment
Not reserved words

PREDEFINED ATTRIBUTES

-- declaration from example

NUMBEROFITEMS :INTEGER range I..INTEGERILAST

INTEGER is a predefined type

LAST is a predefined attribute which returns the maximum
value of any scalar type

T'FIRST returns the minimum value of the type T

T'LAST returns the maximum value of the type T

I.

I.

V -18

NUMBERS

Integer literals

2500
2 500

25R2

2#1001 1100_0100#
* 21100 till 000100$

8#4 704#

16#9C4#

Different representations of same value

Based integers can be represented with

any base from 2 to 16

Real literals

12.75
1275. 0E-2
0.1275e2

2#1100.11$
2#110011.0#~e-2
2#0. 110011#E4

8#14.6#
8#146.0#e1

Different representations of same value

hi 1.190 i

LSTRINGS

I "MAXIMUM IS" -- a string is an array of characters

-- a string of length one

"HE SAID *ONO." -- included string bracket must be
-- written twice

"THIS IS & -- concatenation used to represent
OA STRING" -- strinqs which are longer than

one line

um"u -- a one-character string representing

-- the double quote

-- represents an empty string

i.

Ii
L
[1I.200

S....
rDELIMITERS

Special characters

+ / *

g

< >

()

Compound symbols

replacement

range definition

• * exponentiation operation

>= <= /relational operators

<< >> identifies labels which
are objects of GOTO's

=> indicates relationship
between a name and
a value, action, or
declaration

<> stands for unspecified range

I1

I1.210

COMMENTS

-- This program reads a list of integers

-- A comment starts with a double hyphen

-- and is terminated by the end of the line

begin -- Body of sort

the first two hyphens
start the comment

.

I

! 1
1.2

!
OBJECT DECLARATIONS

ITEM : INTEGER;

identifier list : type-mark;

identifierlist : typemark constraint;

NUMBER OF ITEMS : INTEGER range l..INTEGER'LAST;

Initialization

identifier-list : type mark := expression;

COLNUM, ROW NUM : INTEGER : 0;

READY, BUSY, RUN BOOLEAN := FALSE;

1.23
j 3

RANGE CONSTRAINT

1. NUMBER OF ITEMS :INTEGER~

range 1. .INTEGER'LAST;

Form:

simple expression .. simple expression

L .. R describes values from L to R inclusive

L > R indicates empty range

type of range constraint is type of expression

[1.240

1. STATEMENTS

ASS IGNMENT

IF

LOOP

SUBPROGRAM CALL

1.25

I ASSIGNMENT STATEMENT

variable := expression;

I I
I-same type_

MAXIMUM : ITEM;

SUM SUM + ITEM;

-- compile time checking

-- No automatic conversion

-- across replacement operator

I. 260

IF STATEMENT

if condition then

sequence o f statements

end if;

Example

if MONTH =12 and DAY = 31 then

MONTH 1

DAY 1

YEAR YEAR + 1;

end if;

1.270

if condition then

sequenceofstatements

I elsif condition then I zero or
I -I more times

sequence of statements I

I else I
I optional

I sequence ofstatements II ________________I

end if;

7

I
I . 280

if DAY =DAYS IN MONTH then

DAY := 1;

if MONTH =12 then

MONTH :1

YEAR :=YEAR + 1;

el-se

MONTH :MONTH + 1;

end if;

else

DAY : DAY + 1;

end if;

L 1. 290

DISCRIMINANT : B *B -4.0 *A *C;

if DISCRIMINANT < 0.0 then

PUT (- NO REAL ROOTS)

elsif ABS(DISCRIMINANT) < l.Oe-8 then

PUT (EQUAL REAL ROOTS)

ROOTS :=-B/2.0 * A;

PUT (ROOTS);

else

PUT (UDISTINCT REAL ROOTS)

end if;

L1.300

I
J LOOP STATEMENT

loop_parameter discrete range
I I
I 1
I I
I I
V V

for N in 2.. NUMBER

sequence of statements

end loop;

1. The loop parameter is implicitly declared as a local

identifier; it (logically) exists only during the execu-

tion of the loop statement.

2. The loop parameter acts as a constant; it cannot be

altered b'y the sequenceof statements.

3. The loop parameter has no value outside the loop.

4. The discrete range is evaluated only once, before the

execution of the loop statement.

5. On successive iterations, the loop parameter is succes-

sively assigned values in iRcreasing order from the

specified range when in is used. If reserved word

reverse is used, values are assigned in decreasing

order.

11.310

II

[OTHER LOOP EXAMPLES

for N in reverse 1..80 loop

sequence of statments

end loop;

while condition loop

sequence ofstatments

end loop;

1.320

W&- A6

LOOP STATEMENT
a.

j Composed of

iterationspecification (optional)

basic-loop

iteration specification -

while condition

for loop-parameter in discrete-range

for loopparameter in reverse discrete-range

basic loop -

sequence of statements

end loop;

i1
~1.330

LABELED LOOPS

SEARCH:

end loop SEARCH;

SUMMATION:
for I In l.Nlo

end loop SUMMATION;

Compiler will check labels for proper nesting.

1.34

I SUMMARY

Program Structure

Lexical Units

Declarations

Basic Statements

1.35

EXAMPLE II

PROCEDURES AND FUNCTIONS

11.100

I.
I.

OBJECTIVES

IProcecedures and functions
declaration
parameter mode

Blocks

Visibility

Type declarations

Statements

[. Type equivalence

Operators and operands

IH

,jJ II.110

type FLOAT-ARRAY is array (INTEGER range <>) of FLOAT;

function AVERAGE (V : in FLOAT-ARRAY) return FLOAT is

SUM : FLOAT :- 0.0;

beg in

for I in V'FIRST..V'LAST loop

SUM :- SUM + V(I);

end loop;

return SUM /FLOAT(V'LENGTH);

end AVERAGE;

L 11.120

with MATH LIB;

procedure STATISTICS (V :in FLOAT-ARRAY;

AVG, STD 0EV : out FLOAT)is

SUM :FLOAT := 0.0;

beg in

AVG :AVERAGE(V);

for I in VIFIRST..VILAST loop

SUM :- SUM + (AVG - ()*2

end loop;

STD-DEV :- MATH LIB.SQRT(SUM /FLOAT(V'LENGTH))

end STATISTICS;3

L 11. 130

TYPES and DECLARATIONS

A type characterizes a set of values and a set of operations

applicable to those values.

Type declaration

specification of some attributes

association of a name with the attributes

Data object declaration

associates type (attributes) with a name

creates an object of that type

associates the object with the name

Subprogram declaration

associates a block of code with a name

specifies parameters

1. names, modes, types and order

specify return type (functions)

1. ...0

ARRAY TYPE DEFINITION

name of type

user-defined of
type index

v v

type IFLOAT ARRAY Iis array (IINTEGER range <> I

of I FLOAT I

type of
each

component

£ 11.150

ii SUBPROGRAMS

Procedures and Functions

subprogram_specification Iis

I declarative-PartI

begin

sequence of statemients

end

1116

[! FUNCTIONS

J!].Subprogram specification -

Ifunction AVERAGE (V : in FLOAT ARRAY) return FLOAT

function AVERAGE -- nature and name

-- of subprogram

(V : in FLOAT ARRAY) -- parameter list

-- (optional)

return FLOAT -- type of object to

-- be returned

11.170

.1
PARAMETER MODES

(V : in FLOAT-ARRAY)

for " in" parameters -

the parameter acts as

a local constant whose

value is provided by

the corresponding actual

parameter

(V : FLOAT ARRAY) is equivalent to (V • in FLOAT ARRAY)

1 11.180

I
ARRAY ATTRIBUTES

function AVERAGE (V : FLOATARRAY) return FLOAT is

SUM : FLOAT := 0.0;

begin

for I in V'FIRST..V'LAST loop
SUM := SUM + V(I);

end loop;

return SUM / FLOAT(V'LENGTH);

end AVERAGE;

FIRST, LAST, and LENGTH are predefined attributes

For the array object V,

V'FIRST lower bound of index of V

V'LAST upper bound of index of V

V'LENGTH number of components of V

I

1i

I..

[II.*190

PROCEDURES

Subprogram specification -

procedure STATISTICS

(V : in FLOAT ARRAY;

AVG, STD DEV : out FLOAT);

for "out" parameters -

the parameter acts as

a local variable whose

value is assigned to the

corresponding actual

parameter at the time

of normal exit

.

I.

L 1.0

with TEXT 10, MATH LIB;

procedure ANALYSIS is

use TEXTIO;

type FLOATARRAY is array (INTEGER range <>)

of FLOAT;

SIZE : NATURAL;

function AVERAGE (...) is

end AVERAGE;

procedure STATISTICS (...) is

end STATISTICS;

begin

GET(SIZE);

declare

RATE : FLOAT ARRAY(I..SIZE);
AVERAGE RATE,
STDDEVRATE : FLOAT;

beg in

for I in 1..RATE'LAST loop
GET (RATE(I));

end loop;
STATISTICS (RATE, AVERAGERATE, STDDEVRATE);

. -- use of AVERAGE RATE and STD DEV RATE

. -- in this code

end;

-- Variables in block no longer visible

S- end ANALYSIS;

i1

j II.210

TB LOC K

declare

T 1
I declarative_part I

begin

Isequence-of-statements I

end;

Execution of block results in

elaboration of its declarative part

followed by

execution of the sequence of statements

j 11.220

f TEXTUAL STRUCTURE

function F is

begin

end F;

procedure P is

begin

end P;

declare

beg in

end;

[11.230

.i
SUBTYPES

SIZE : NATURAL;

NATURAL is a predefined identifier

subtype NATURAL is INTEGER

range I..INTEGER'LAST;

where LAST is a predefined attribute

*IIf T represents a scalar type,

T'LAST returns the maximum value in the range of T.

T'FIRST returns the minimum value in the range of T.

1.

Ii
[11.240

[

procedure SORT (V : in out FLOAT-ARRAY) is

LAST : INTEGER := V'LAST - 1;

CHANGED : BOOLEAN;

procedure SWAP (INDEX : in INTEGER) is

TEMP : FLOAT := V(INDEX);

begin -- SWAP

V(INDEX) :- V(INDEX + 1);

V(INDEX + 1) :- TEMP;

end SWAP;

beg in -- SORT

loop

CHANGED := FALSE;

for I in V'FIRST..LAST loop

if V(I+I) < V(I) then

i- SWAP(I);

CHANGED :- TRUE;

end if;

1. end loop;

exit when LAST <- V'FIRST or not CHANGED ;

ILAST :- LAST - 1;

end loop;

end SORT;

I1
Ii 11.250

I[procedure SORT (V : in out FLOAT-ARRAY)

[for "in out" parameters-

1. parameter acts as a

local variable and

permits access and

assignment to the

corresponding actual

parameter.

ii

S11.260

[NESTED PROCEDURES

procedure SORT . . . is

declarative
part

begin body of SORT

I sequence of statements I executable
I__I part

end SORT

i ii

[NESTED PROCEDURES

procedure SORT . . . is

I.I LAST : INTEGER :-V'LAST -1; I
Ideclarative

I CHANGED : BOOLEAN; I part

begin -- body of SORT

I sequence-o f statements Iexecutable
I __ I part

end SORT;

11.280

I
NESTED PROCEDURES

procedure SORT . • . is

ri
LAST : INTEGER "= VILAST- 1;

declarative
CHANGED : BOOLEAN; part

procedure SWAP ... is

end SWAP;

begin -- body of SORT

I I
sequence_of scatements I executable

I _I part

end SORT

12I:

procedure SORT (V : in out FLOATARRAY) is

LAST : INTEGER : VOLAST - 1;

CHANGED • BOOLEAN;

procedure SWAP (INDEX : in INTEGER) is

TEMP : FLOAT := V(INDEX);

beg in

V(INDEX) := V(INDEX + 1);

V(INDEX + 1) :- TEMP;

end SWAP;

begin -- body of SORT

end SORT;

L

[11.300

VISIBILITY

procedure OUTER is

A : BOOLEAN;

B : BOOLEAN;

procedure INNER is

B : BOOLEAN; -- Redeclaration hides

-- outer B
C : BOOLEAN;

beg in

-- Outer A, inner B and C
-- are directly visible

-- Outer B can be made visible
-- by a selected component,
-- that is, OUTER.B

end INNER;

beg in

-- Outer A and B are directly visible
-- Inner B and C are not visible

end OUTER;

.
11.31n

I
NESTING OF STATEMENTS

begin -- body of SORT

loop

assignment;

for ... loop

if then

assignment;

assignment;

end if;

end loop;

exit when ...

assignment;

end loop;

end SORT;

11.320
mood

I LOOP & EXIT STATEMENTS

I loop

I exit when condition;

end loo.2

exit statement causes explicit

termination of enclosing loops

unless ...

Ii 11.330

1. REPLACE:

loop

SEARCH:

loop

exit REPLACE when C ONE ;

exit when CTWO;

end loop SEARCH;

end loop REPLACE;

L 11.340

I

TYPE EQUIVALENCE

type ELEMENT is range O..K;

A : array (l..N) of O..K;

B : array (l..N) of O..K;

C : array (l..N) of ELEMENT;

D : array (l..N) of ELEMENT;

A, B, C, and D are each considered to be of different and
distinct types even though the types are textually
identical. Thus, the assignment statements

A : B;

B : C;

are not allowed.

The assignment

C(I) := D(I);

is acceptable since the variable and the expression are of
the same type (ELEMENT), whereas

C(I) := B(I)

is not allowed.

.
L .350

A,B :array (l..N) of O..K;

A and B are objects of the same type

type VECTOR is array (l..N) of 0..K;
C : VECTOR;
D : VECTOR;

C and D are objects of the same type

Whereas A := and C :- D are
valid, A C is not valid.

1..

L 11.360

F" A"W

Different from constraints

* I, J INTEGER range l..10;

K :INTEGER range 1-.20;

I, J and K are all of the same

type (i.e., INTEGER)

I J= ; -identical ranges

K J= ; -compatible ranges

3 =K; -- can only be checked

-during execution

K :15;
3 =K; -- raise the

-RANGE-ERROR exception

1137

K
L

i

TYPES

Scalar types values have no components; includes
enumeration, integer, and real types

integer and real called numeric types

Composite types values consist of several component
types; includes arrays and records

Access types value provides access to other objects

Scalar

i I
Real Discrete

1 I
I III

. FLOAT fixed point INTEGER Enumeration
(includes
CHARACTER

1. and
BOOLEAN)

I-

[11.380 I

LOGICAL OPERATORS

I. Operator Operand type Result type

and or xor not BOOLEAN BOOLEAN
one dimensional same array type

array of BOOLEAN
components

Example:

type BIT-VECTOR is array l l..32) of BOOLEAN ;

A, B : BITVECTOR;

Valid expressions:

A and B

A(l..8) or B(l..8)

A(2..5) xor B(29..32)

I1
1.

II Il. 390

I/

RELATIONAL OPERATORS

Operator Operand Type Result Type

= = any type BOOLEAN

< <= > >= one dimensional array BOOLEAN
with components of a BOOLEAN
discrete type

Example:

S, T : array (l..N) of INTEGER;

EQUAL := TRUE;
for I in l..N loop

if S(I) = T(I) then
EQUAL : FALSE;
exit;

end if;
end loop;

can be written as

EQUAL :- S T;

Can be extended to multidimensional arrays

11.400

ARITHMETIC OPERATORS

Operator Operand Type Result Type

+ - integer same integer type
real same real type

*integer same integer type
*floating same floating point type

mod rem integer same integer type

Operator Left Operand Right Operand Result
Type Type Type

**integer positive integer integer
1.floating integer floating

1. TYPE CONVERSIONS

1. Explicit type conversions allowed between closely related types.

Numeric type conversions:
REAL(integer expression) -value is converted

-to floating point

INTEGER (1.6) - 2 -- conversion of real to integer
INTEGER (-0.4) -0 -- involves rounding

[11.410j

PRECEDENCE

(lowest) logical and or xor
relational a = <= < > >=
adding + - &
unary + - not
multiplying *mod rem

(Highest) exponentiating *

All operands are evaluated (in an undefined order)
before evaluation of the corresponding operator.

Therefore, the expression

A and B or C

requires parentheses; that is

(A and B) or C

or

A and (B or C)

The expressions

A and B and C

and

A or B or C

do not require parentheses.

Short circuit control forms (and then and or else) have same
precedence as logical operators.

Membership tests (in and not In) have same precedence as
relational operators.

Ii 11.420

I

i-
I.

FLOATING POINT TYPE

User defined floating point type:

type identifier is floatingpoint constraint;

where floatingpointconstraint is

digits P or
digits P range L .. R

1. where D is the required number of digits.

1Floating_point constraint specifies a minumum requirement.

EXAMPLES:

type COEFFICIENTS is digits 10 range -1.0 .. 1.0;

type REAL is digits 8;

package STANDARD is

[yp INTEGER is range implementation defined;
type SHORT INTEGER is range implementation defined;

LONGTNTEGER isrange implementationdefined;

type FLOAT is digits implementation defined
range implementation defined;

typ SHORT FLOAT is digits implementation-defined
r anme-impleme-nta-odefined;

typ MNFLOAT is digits-implementation defined
rang implem entaton defined;

11.430

,,,, ;;.2" _.. 2

FIXED POINT TYPES

EXAMPLE:

jyeF is delta 0.01 range -100.0 .. 100.0;

where "delta" of fixed point type specifies the absolute

value of the error bound.

If representation uses power of two, 14 bits are required

for the magnitude, i.e.,

64 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128

binary point

The error is 1/128 =0.000_0001 (base 2) =0.0078125 < 0.01

I 11.440

SUMMARY

Procedures and functions
declarations

parameter mode

Blocks

Visibility

Type declarations

I Statements

Type equivalence

Operators and operands

II 11.450

EXAMPLE III

RECORD HANDLING

L XII. 100

fOBJECTIVES

I

Packages

Records and record aggregates

Case statement

Input - Output

Program Structure

Visibility

Separate Compilation

L
ILIII. 11

Example III

procedure PROCESSRECORDS is

package RECORD HANDLER is
--specifications

end RECORD HANDLER;

use RECORD HANDLER;
ITEM : ITEM RECORD; -- defined in RECORD HANDLER
NOMORERECORDS : BOOLEAN := FALSE;

package body RECORD HANDLER is
-- implementation

end RECORDHANDLER;

begin
OPEN FILES;
loop-

GET VALID RECORD (ITEM, NO MORE RECORDS);
exit when-NO MORE RECORDS;-
WRITERECORD-(ITEM);

end loop;
CLOSE FILES;

end PROCESSRECORDS;

-- This specification appears inside of PROCESS RECORDS, as is
-- indicated above.

package RECORD HANDLER is
type ITEMRECORD is

record
ITEM CODE : record

PREFIX : STRING(..2);
NUMBER : range 0..9_999;
SUFFIX : CHARACTER;

end record;
DESCRIPTION : STRING(l..30);
SOURCE : range 0..999_999;

end record;
procedure OPEN FILES;
procedure CLOSE FILES;
procedure GET_V]ALIDRECORD (REC : out ITEM-RECORD;

END OF DATA : out BOOLEAN);
procedure WRITERECORD (REC : in ITEMRECORD);

end RECORD HANDLER;

-i 111.120

-- This implementation of RECORD HANDLER is similarly meant to
-- appear within PROCESSRECORD.

with (TEXT 10);
package bogy RECORD-HANDLER is

use TEXT IO;
subtype RECORD STRING is STRING (1..43);
package RECORD-IO is new INPUT OUTPUT (ITEMRECORD);
IMMEDIATE, DEFERRED : RECORD IO .OUT FILE

procedure OPEN FILES is
use RECORD O;

begin
CREATE (IMMEDIATE, *external file name*);
CREATE (DEFERRED, wexternal file name");

end OPEN PILES;

procedure CLOSE FILES is
use RECORD I0;

begin
CLOSE (IMMEDIATE);
CLOSE (DEFERRED);

end CLOSE-FILES;

procedure GETNEXTRECORD (REC : out RECORDSTRING;
VALID LENGTH,
ENDOFDATA : out BOOLEAN) is

I : NATURAL;
beg in

if CHARACTER IO.END OF FILE then
ENDOFDATA TRUE;

else
END OF DATA FALSE;
I := ;
while not END OF LINE and I < 43 loop

I := I + 1i;
GET (REC(I));

end loop;

VALIDLENGTH := I = 43 and END OF LINE;

if not END OF LINE then
SKIP LINE;

-- advances input to beginning
-- of next line
end if;

end if;

end GET NEXT RECORD;

III.130
L.

function VALID RECORD (REC : in RECORD STRING)
return BOOLEAN is

function LETTERS (S : STRING) return BOOLEAN is
begin

for C in S'FIRST..S'LAST loop
if S(C) not in 'A'..'Z' and S(C) not in 'a'..'z'

then return FALSE;
end if;

end loop;
return TRUE;

end LETTERS;

function NUMERALS (S : STRING) return BOOLEAN is
beg in

for C in S'FIRST..S'LAST loop
if S(C) not in '0'..'9' then

return FALSE;
end if;

end loop;
return TRUE;

end NUMERALS;

begin -- body of VALID RECORD
if LETTERS (REC(l..3)) and then NUMERALS (REC(3..6))

and then (REC(7) = 'N' or REC(7) = 'L' or REC(7) = 'X')
and then NUMERALS (REC(38..43)) then

return TRUE
else

return FALSE
end if;

end VALIDRECORD;

procedure WRITE RECORD (REC : in ITEMRECORD) is
use RECORD 10;

begin
case REC.ITEM CODE.SUFFIX of

when 'N' =5 WRITE (IMMEDIATE, REC);
when 'X' I 'L' => WRITE (DEFERRED, REC);
others => null;

end case;
end WRITERECORD;

procedure WRITE ERROR (REC : in RECORD STRING) is
begin

PUT("INVALID DATA: & REC);
NEW LINE;

end WRITE ERROR;

111.140

function CONVERT (R : RECORDSTRING) return ITEMRECORD is

function STRING TO INT (S : STRING) return INTEGER is
VALUE : INTECER-:= 0;

begin
for I in S'FIRST..S'LAST loop

VALUE := 10 * VALUE + CHARACTER'POS(S(I)) -
CHARACTER'POS ('0');

end loop;
return VALUE;

end STRING TOINT;

begin -- body of CONVERT
return (ITEM CODE -> (R(1..2),

STRING TO INT (R(3..6)),R(7)) ,
DESCRIPTION => R(8..37),
SOURCE => STRING TO INT (R(38..43)));

end CONVERT; - -

procedure GETVALIDRECORD (REC : out ITEMRECORD);
ENDOF DATA : out BOOLEAN) is

S : RECORD STRING;
LENGTHERROR : BOOLEAN;

beg in
loop

GET NEXT RECORD (S , LENGTH-ERROR, ENDOFDATA);
if END OFDATA then

return;
elsif LENGTH ERROR or else not VALIDRECORD(S) then

WRITEERROR(S);
else

REC := CONVERT(S);
return;

end if;
end loop;

end GETVALIDRECORD;

end RECORD HANDLER;

SII. 150

f INPUT VALIDATION
and

FILE SELECTION

I FILE OF I
I RECORDS I
I (INPUT) II i

Ii
V

IRECORD I
I HANDLER II I

/ I \
I I \

I II \
/ I \

/ I \

I / I I \l

file: I file: file:
OUTPUT I IMMEDIATE DEFERRED
Invalid I
records I

INPUT: string (array of characters)

OUTPUT: string

IMMEDIATE: file of records

DEFERRED: file of records

.

[
Ii INPUT RECORD FORMAT

I (valid records)

POSITION NAME CONTENT

1-7 ITENCODE
- PREFIX 2 ALPHABETIC

CHARACTERS

- NUMBER 4 NUMERALS

- SUFFIX N, L, or X

8-37 DESCRIPTION 30 CHARACTERS

38-43 SOURCE 6 NUMERALS

I. ,I I. 170

f Input:

subtype RECORD STRING is STRING (1-.43);

j REC : RECORD-STRING;

Valid Input output files IMMEDIATE

and DEFERRED

REC (l..7) ITEMCODE

REC (l..2) PREFIX

REC (3..6) CONVERT NUMBER

REC (7) ------ >SUFFIX

REC (8..37) DESCRIPTION

REC (38..43) SOURCE

III. 180

,[
[ARRAY OBJECT -

a set of components in which each

component is of the sam type

array component is designated

by one or more index values

RECORD OBJECT -

a set of components in which

the components may be of

different types

a record object has named components

11-.190

RECORD STRUCTURE

ITEM CODE DESCRIPTION SOURCE

I PREFIX I NUMBER I SUFFIX

~/

type ITEM RECORD is
record

ITEM CODE : record
PREFIX : STRING(1..2);
NUMBER : range O..9_999;
SUFFIX : CHARACTER;

end record;
DESCRIPTION : STRING (1..30);
SOURCE : range 0..999_999;

end record;

.
L111.200

j Object declaration

REC : ITEM RECORD;

L

Reference to the components:

REC.SOURCE := 475124;

REC.ITEMCODE.PREFIX " "Ps";

case REC.ITEM CODE.SUFFIX is

L 111.210

PROGRAM DESIGN

Initialize

loop

get valid record

exit when no more records

write to selected file

end loop

clean up

iI I. 2

PROGRAM STRUCTURE

--- OPEN FILES

--- GET NEXT RECORD

GET I--- LETTERS

I-VALID ----------- -VALID RECORD -------I

RECORD j--- NUMERALS

I ~--- WRITE ERROR

--CONVERT ------ STRING TO INT

I---WRITE RECORD

--- CLOSE FILES

L 111.230

I

TPACKAGE SPECIFICATION

package RECORD-HANDLER is

type ITEMRECORD is

record

ITEM CODE : record

PREFIX : STRING(1..2);

NUMBER : range 0..9_999;

SUFFIX : CHARACTER;

end record;

DESCRIPTION : STRING(1..30);

SOURCE : range 0..999_999;

end record;

procedure OPEN FILES;

procedure CLOSEFILES;

procedure GET VALID RECORD (REC : out ITEM RECORD;

END OF DATA : out BOOLEAN);

procedure WRITERECORD (REC in ITEM RECORD);

end RECORD-HANDLER;

111.240

I
TPROCESS RECORDS

procedure PROCESS RECORDS is

package RECORD HANDLER is

--specifications

end RECORD HANDLER;

use RECORD-HANDLER;

ITEM : ITEM RECORD; -- defined in RECORD HANDLER

NO MORE RECORDS : BOOLEAN :- FALSE;

package body RECORDHANDLER is

-- implementation

end RECORD HANDLER;

begin

OPEN_FILES;

loop

GETVALID RECORD (ITEM, NOMORE RECORDS);

exit when NO MORERECORDS;

WRITE RECORD (ITEM);

end loop;

CLOSE FILES;

end PROCESS RECORDS;

111.250

Outline of RECORD-HANDLER

with TEXT 10;

package body RECORDHANDLER is

use TEXTIO;
subtype RECORD STRING is STRING (l..43);
package RECORD IO is new INPUT OUTPUT

(ITEM-RECORD);
IMMEDIATE, DEFERRED : RECORD IO.OUTFILE;

procedure OPEN FILES is

end OPEN-FILES;

procedure CLOSE-FILES is

end CLOSEFILES;

procedure GETNEXTRECORD (REC out RECORDSTRING;
VALID LENGTH,
END OF6 DATA : out BOOLEAN) is

end GET NEXT RECORD;

tunction VALID RECORD (REC : in RECORDSTRING)
return BOOLEAN is

function LETTERS (S STRING) return BOOLEAN is

end LETTERS;

function NUMERALS (S : STRING) return BOOLEAN is

end NUMERALS;

end VALID-RECORD;

.

I. III. 260

procedure WRITE-RECORD (REC : in ITEM-RECORD) is

end WRITE-RECORD;

procedure WRITEERROR (REC : in RECORDSTRING) is

end WRITE ERROR;

function CONVERT (R : RECORD-STRING) return ITEM RECORD is

function STRINGTOINT (S :STRING) return INTEGER is

end STRINGTOINT;

end CONVERT;

procedure GET VALID RECORD (REC : out ITEM RECORD;
END OF DATA : out BOOLEAN) is

end GET VALID RECORD;

end RECORD HANDLER;

S111.270

GET VALID RECORD

procedure GET VALID RECORD (REC : out ITEM RECORD;
END OF DATA : out BOOLEAN) is

S : RECORD STRING;
LENGTHERROR : BOOLEAN;

beg in

loop

GET NEXT RECORD (S , LENGTH ERROR, ENDOFDATA);

if END OF DATA then
return;

elsif LENGTH ERROR or else not VALID RECORD(S) then
WRITE EROR (S);

else
REC := CONVERT(S);
return;

end if;

end loop;

end GETVALIDRECORD;

.111.280

T SHORT CIRCUIT CONDITION

or else

expression-1 or expression-2

expresslon-2 will be evaluated even
if expression-1 is true

expression-1 or else expression-2

if expression-1 is true, expression-2
is not evaluated

A or else B or else C

evaluation of expressions (A,B,C)
proceeds in textual order

evaluation stops as soon as an
expression evaluates to true

.
1II. 290 .

GET NEXTRECORD

fi procedure GET NEXTRECORD (REC : out RECORD-STRING;

VALID LENGTH,

END OF DATA : out BOOLEAN) is

I : NATURAL;

begin

jif CHARACTERIO.END OF FILE then

ENDOFDATA : TRUE

else

ENDOFDATA := FALSE;

I :- 0;

while not ENDOFLINE and I < 43 loop

I := I + 1;

GET (REC(I));

end loop;

VALIDLENGTH := I = 43 and END OFLINE;

if not END OF LINE then

SKIP LINE;

-- advances input to beginning

-- of next line

end if;

end If;

end GET NEXT RECORD;

.

III1.300

1. VALIDRECORD

(Structure)

function VALID RECORD ... is

function LETTERS ... is

begin

end LETTERS;

function NUMERALS ... is

begin

end NUMERALS;

begin -- body of VALID-RECORD

end VALID-RECORD

111. 310

VALID RECORD

Ifunction VALID RECORD (REC : in RECORD STRING)
return BOOLEAN is

function LETTERS (S : STRING) return BOOLEAN is

begin

for C in S'FIRST..S'LAST loop

if S(C) not in 'A'..'Z' and S(C) not in 'a'..'z'

then return PALSE;

end if;

end loop;

return TRUE;

end LETTERS;

Ii

I - *, 111.320

NEW__-

MEMBERSHIP OPERATOR

if S(C) not in 'A..'Z' and

S(C) not in 'a'..'z' then

return FALSE;

'in' and 'not in' are membership

operators

test for membership of a value

of any type within a corresponding

range, subtype, or constraint

returns boolean value

same precedence as relational

operators

111.330

function NUMERALS (S :STRING)

return BOOLEAN is

beg in

for C in SIFIRST..S'LAST loop

if S(C) not in 10'..191 then

return FALSE;

end if;

end loop;

return TRUE;

end NUMERALS;

j 111.340

SHORT CIRCUIT CONDITION

begin -- body of VALID RECORD

ifLETTERS (REC(l..2)) and then NUMERALS (REC(3..6))

*and then (REC(7) I N' or REC(7) - ILI or REC(7) = XI)

and then NUMERALS (REC(38..43)) then

return TRUE;

else

return FALSE;

end if;

end VALID RECORD;

if Cl and then C2 and then C3 then

is equivalent to

if Cl then

if C2 then

if C3 then

L 111.350

CONVERT

All Character Name Type

(STRING)

R(1..2) ------------------ > PREFIX CHARACTER

R(3..6) -- >STRING TO INT--> NUMBER l..9 999

R(7) ---- .-------------- > SUFFIX CHARACTER

R(8..37) ------------------ > DESCRIPTION CHARACTER

R(38..43) -->STRING TO INT--> SOURCE 1..999_999

111.360

-Nw --o """OR-.

PREDEFINED ATTRIBUTE

POS

T'POS(X) gives the ordinal position

of the value X in the

discrete type T

T'POS(T'FIRST) = 0

type CHARACTER is

(nul, soh, stx, etx, ...

go,, .11, 921 1* 91,**
$AllI I I Ie eeo , Sz e ee ..

'a" 'b' ' ce ..) ze

Standard ASCII character set

CHARACTER'POS(NUL) = 0

CHARACTER'POS(CHARACTER'LAST) = 127

CHARACTER'POS('3') # 3

CHARACTER'POS ('3')

- CHARACTER'POS(10') - 3

111.370

:LOO

jCONVERT "475" TO 475

function DEC (C : CHARACTER)

return INTEGER is

BASE :constant INTEGER CHARACTER'POS('0');

begin

return CHARACTER'POS(C) -BASE;

end DEC;

DEC('4') = 4

DEC('7') = 7

S :='475"

N :0;

for I in SIFIRST..S'LAST loop

N := N *10 + DEC(S(I));

end loop;

[111.380

function STRINGTO-INT (S :STRING

return INTEGER is

VALUE : INTEGER :- 0;

beg in

for I in S'FIRST., SILAST loop

VALUE := VALUE * 10

+ CHARACTER'POS(S(I))

- CHARACTER'POS('0');

end loop;

return VALUE;

end STRING TOINT;

111 3,

1II.390

ARRAY SLICE

function STRINGTO INT (S : STRING)

return INTEGER is..

STRINGTO INT -451) 451

STRING INTEGER

-declaration

PHONE-NUMBER :STRING (1-..0);

-- assignment

PHONE-NUMBER 0 40489431810;

-declaration

AREA CODE , EXTENSION INTEGER;

-assignment

AREACODE

STRINGTOINT(PHONE NUMBER (l..3))

-sets AREA-CODE to 404

EXTENSION :

STRINGTOINT(PHONENUMBER (7..10)

-sets EXTENSION to 3181

ii 111.400

-declarations

PHONE NUMBER : STRING (I..10);

AREA-CODE : STRING (1..3);

EXTENSION t STRING (l..4);

-assignments

PHONE-NUMBER :- 4048943181";

AREA-CODE SPHONE-NUMBER (l..3);

EXTENSION :~PHONE-NUMBER (7..10);

PHONE-NUMBER (7..10) " 18151;

PHONE-NUMBER (4..6) :

PHONENUMBER (l..3);

PHONE-NUMBER (J..5)

PHONE NUMBER (3. .7);

~1. 111.410

function CONVERT (R : RECORD STRING)

return ITEM RECORD is

function STRINGTOINT ...

end STRING TO INT;

beg in

return (ITEM CODE -> (Rl..2),

STRINGTOINT (R(3..6)),

R (7)),

DESCRIPTION -> R (8..37),

QUANTITY =>

STRING TO INT (R(38..43))) ;

end CONVERT;

jL 111.420

I
RECORD AGGREGATE

ITEM CODE : record

PREFIX : STRING (l..2);

NUMBER : range 0..9 999;

SUFFIX : CHARACTER;

end record;

A record aggregate denotes a value constructed

from component values.

NEW-ITEM ITEMCODE; -- object declaration

NEW ITEM := ("CT" , 2493 , 'N') -- assignment

NEW-ITEM = I CT 124931 N II _ _ _ I _ _ _ I _ _ I

position - textual order

NEW ITEM := (NUMBER => 2493, PREFIX => "CT",

SUFFIX => IN'

named components

1.

RECORD AGGREGATE

-named component

(ITEM CODE -

-- positional

(R(l..2), -- PREFIX

STRINGTOINT(R(3..6)), -- NUMBER

R(7)), SUFFIX

-named component

DESCRIPTION -> R(8..37),

array slice

-named component

SOURCE -> STRING TO INT(R(38..43)))

array slice

111.440

jCHARACTER INPUT-OUTPUT

The package TEXT IO contains the definition of all the text

input-output primitives.

It contains the specifications

procedure GET(ITEM : out CHARACTER);

procedure PUT(ITEM : in CHARACTER);

procedure PUT(ITEM : in STRING);

.
Ii
L 1II.450

bWRITEERROR and WRITE RECORD

procedure WRITE ERROR (REC : in RECORD STRING) is

beg in

PUT(*INVALID DATA: REC);

NEW-LINE;

end WRITE ERROR;

procedure WRITE-RECORD (REC : in ITEM-RECORD) is

use RECORD IO;

beg in

case REC.ITEM CODE.SUFFIX is

when 'N' => WRITE (IMMEDIATE, REC);

when 'X' I 'L' > WRITE (DEFERRED, REC);

others => null;

end case;

end WRITE RECORD;

L 111.460

I
TEXT FILES

All characters occupy exactly one column.

Characters of a file are considered to form a sequence

of lines.

Layout control

LINE - returns current line number

COL - returns current column number

END OF LINE - returns TRUE if there is no character

left on the current input line

(defined for IN FILE only)

SKIPLINE - advances the input to the beginning

of the next line (defined only for

IN FILE)

NEW LINE - terminates current output line

(defined only for OUT FILE)

SET COL - sets the current column number

SETLINELENGTH - sets the line length

LINE LENGTH - returns current line length

j III.470

FILE OF RECORDS

A file is associated with an ordered collection of elements,

all of the same type.

Let Et denote an element of type T.

IEt IEt IEt I.. Et IEtI

In this example, each Et is a record

I I I ITEM-CODEII
IEt I=-------------------------- DESCRIPTION IQUANTITY

I I IPREFIX INUMBER ISUFFIXII

111. 480

!

package RECORD IO is new

INPUT OUTPUT (ITEM RECORD) ;

INPUT OUTPUT is a standard generic

package which provides the

calling conventions for operations

such as OPEN, CLOSE, READ, and

WRITE.

generic (type ELEMENTTYPE)

package INPUTOUTPUT is

procedure WRITE (FILE : in OUT FILE;

ITEM : in

ELEMENT TYPE);

A generic package is a model which

can be parameterized.

1

II *49

package RECORD_10 is new

INPUT OUTPUT (ITEMRECORD);

parameter

generic !.nstantiation

obtains a copy (instance)

of the model with actual

parameter ITEMRECORD

substituted for the

generic formal parameter

ELEMENTTYPE.

I.
1.

[111.500

mob--.-- - -

IMMEDIATE,DEFERRED : RECORDIO.OUT FILE;

OUT FILE is a file type with

write-only access

it is declared in the package

INPUTOUTPUT

it is instantiated within

RECORD IO

I

I
11151

6 I

Ii

OPEN-FILES and CLOSE FILES

The generic standard package INPUTOUTPUT contains the

specifications

procedure CREATE(FILE : in out OUT-FILE;

NAME : in STRING);

which establishes a new external file associates the given

file with it; this association "opens" the file, and

procedure CLOSE(FILE : in out OUT FILE);

which breaks the association.

procedure OPEN FILES is
use RECORDIO;

begin
CREATE (IMMEDIATE, "external file name");
CREATE (DEFERRED, "external file name");

end OPENFILES,

procedure CLOSE FILES is
use RECORD I0;

begin
CLOSE (IMMEDIATE)
CLOSE (DEFERRED);

end CLOSE FILES;

i.1
~111.520

PROGRAM STRUCTURE

Packages are a versatile feature used in

a number of ways in the construction of

Ada programs.

Packages allow for the specification of groups

of logically related entities:

* pools of common data and associated

type declarations

groups of related subprograms (either

within a single program or as a subprogram

library)

a type declaration along with subprograms

to serve as operators on the type

(data abstraction)

The separation of a package body from its

specification provides an important

information hiding capability.

LL 111.530

Ji GROUPS OF TYPE AND OBJECT

DECLARATIONS

package WORK-DATA is

type DAY is (MON,TUE,WED,THU,FRI,SAT,SUN);

type HOURS is INTEGER range 0..2400;

type TIME TABLE is

array (MON..SUN) of HOURS;

WORK HOURS : TIME TABLE;

NORMAL HOURS : constant TIME TABLE

: (MON..THU => 850, FRI => 600,

SAT I SUN => 0);

end WORK DATA;

.

Ii

III,540 ;

I
VISIBILITY

i.
procedure EXAMPLE

package WORK DATA is

end WORK DATA;

Identifiers declared within WORK DATA

can be used here, denoted by

selected components

Examples of legal references:

WORK DATA.DAY

WORKDATA.WORK HOURS

end EXAMPLE;

WORK DATA and its components are not

visible outside of EXAMPLE.

' I: II1.550

USE CLAUSE

procedure EXAMPLE..

package WORK-DATA is

end WORKDATA;

procedure P2..

use WORK DATA;

identifiers declared within WORK-DATA
are now directly visible.

Examples of legal references:
TIME-TABLE
NORMAL-HOURS

end P2;

The use clause is no longer effective
outside of P2, so selected component
notation must again be used to reference
the objects defined within WORKDATA.

end EXAMPLE;

WORK -DATA and its components are again
not visible at this point.

111.560

I|

procedure MAIN is

package WORK DATA is

NORMAL HOURS : constant TIME TABLE
:m TMON..THU -> 850,FRI a5 600,

SAT I SUN-> 0);
end WORK DATA;

procedure A is

use WORKDATA;

NORMAL HOURS : INTEGER;

-- NORMAL HOURS refers to the integer;
-- it caniot be hidden by the
-- the same identifier declared
-- in the package.

-- The use clause makes all identifiers
-- in the package directly visible
-- except for the identifier NORMAL HOURS.

-- It can only be denoted as a
-- selected component, that is,
-- WORK DATA.NORMAL HOURS (...)

end A;

end MAIN;

K 111.570

I STRUCTURE OP EXAMPLE III

L. procedure PROCESSRECORDS is

I Ipackage RECORD HANDLER is

end RECORD HANDLER;

use RECORD HANDLER;
ITEM : ITEM.RECORD;

package body RECORD HANDLER is

end RECORD HANDLER;

begin

SI I
I I

end PROCESS RECORDS;

1.I.
I[

K

procedure PROCESS-RECORDS is

package RECORD-HANDLER is

S-- type & variable declarations

-- subprogram specifications

end RECORD-HANDLER;

use RECORD HANDLER;
ITEM : ITEM RECORD;

-- variabTe declaration

I package body RECORD HANDLER is

-- type & variable declarations

-- subprogram bodies

end RECORD-HANDLER;

beg in

I I
I I

end PROCESS RECORDS;

[

[111.590

procedure PROCESS-RECORDS is

I Ipackage RECORDHANDLER is I

I I -- package specificationII

I I -visible part I

IIend RECORD-HANDLER;II

use RECORD HANDLER;
I ITEM : ITEM RECORD;

I -- variabli declarationI

I Ipackage body RECORDHANDLER is I

I I -package body I
I I -- entities not accessibleII
I I -- outside the packageII

IIend RECORD-HANDLER;II

beg in

end PROCESS-RECORDS;

L 111.600

SEPARATE COMPILATION

i
PROGRAM - collection of one or

more compilation units

COMPILATION UNIT -

. subprogram body

. package specification

package body

Compilation units of a program

are said to belong to a

PROGRAM LIBRARY

11 .

[111.610

T SEPARATE COMPILATION

Version 1

I procedure PROCESSRECORDS is

package RECORD HANDLER is
I -- contains-type declarations

-- and subprogram specifications I
end RECORD-HANDLER;

I use RECORD HANDLER;
ITEM : ITEM -RECORD;

package body RECORD -HANDLERI
I is separate;

I begin

7 end'iL~CESS RECORDS;I

The package body is to be compiled
separately.

I separate (PROCESS-RECORDS)I
with TEXT 10;I

1 package b!Fdy RECORDHANDLER isI
I -- local declaratFionsI
I -- subprogram bodies

I end*RECORD HANDLER;I

111.620

COMPILATION OF PACKAGE BODY

separate (PROCESSRECORDS)

with TEXT_10;

package body RECORD-HANDLER is

-local declarations and the bodies

-of the subprograms declared in

-the specification part are found

-in the package body

end RECORD HANDLER;

The with clause Indicates that the package

TEXT 10 will be used in this package body.

The separate clause says that the specifications

for this package can be found in the program

unit named PROCESS-RECORDS. Identifiers

visible at the point of the separate declaration

in PROCESS-RECORDS are also visible in the

package body.

Il .63 --- -

I SEPARATE COMPILATION

Version 2

Three program units

1. package specification

2. subprogram (program)

3. package body

Each compiled separately.

Package specification must

be compiled first.

Procedure and package body

may be compiled (and

recompiled) in any order.

The package body is no longer

within PROCESSRECORDS, so

no separate clause is used.

ii 111.650

SEPARATE COMPILATION

Version 3

Ipackage RECORD HANDLER isI
I -- type declarations andII I -- subprogram specifications

Iend*RECORD HANIDLER;I

Iwith RECORD HANDLER;
procedure PROCESS RECORDS is
I use RECORD HAN15LER;

begin

I nd PROCESS RECORDS;I

Iwith TEXT 10;
Ipackage bo'jy RECORDHANDLER~ is

I use TEXT 10;
-declaFation of entitiesI

I -- not accessible outside
I -- package body andI
I -- subprogram bodiesI

I unction VALID RECORD ...
I return BOOLEAN is separate; I

Iend*PROCESS RECORDS;

Iseparate (RECORD HANDLER)
function VALID RECIfORD .. isI

Iend VALID RECORD

1~ 111.660

SEPARATE COMPILATION

Version 3

Within the body of RECORDHANDLER,

the separate compilation of a subprogram

within another program unit is illustrated.

function VALID-RECORD (REC : in RECORD-STRING

return BOOLEAN is separate;

The body of this function would be compiled

as a fourth compilation unit. It must be

compiled after the body of RECORDHANDLER

(and recompiled any time that body is recompiled).

separate (RECORD HANDLER)
function VALID R-ECORD ... is

end VALID-RECORD;

111.670

I

Example III

Final Version

package RECORD HANDLER is
type ITEM RECORD is

record
ITEM CODE : record

PREFIX : STRING(l..2);
NUMBER : range 0..9 999;
SUFFIX : CHARACTER;

end record;
DESCRIPTION : STRING(l..30);
SOURCE : range 0..999 999;

end record;
procedure OPEN FILES;
procedure CLOSY FILES;
procedure GET VXLIDRECORD (REC : out ITEM RECORD;

END OF DATA : out BOOLEAN);
procedure WRITE RECORD (REC : iF ITEMRECORD);

end RECORD HANDLER.

with RECORD HANDLER;
procedure PROCESS RECORDS is

use RECORD HANDLER;
ITEM : ITEM RECORD; -- defined in RECORD HANDLER
NOMORERECORDS : BOOLEAN := FALSE;

begin
OPEN FILES;
loop-

GET VALID RECORD (ITEM, NO MORERECORDS);
exiE when-NO MORE RECORDS;-
WRITE RECORD-(ITEM);

end loop;
CLOSE FILES;

end PROCESS RECORDS;

t.

IL f
. 111.680

K

with TEXT 10;
package b~dy RECORDHANDLER is

use TEXT 10;
subtype 1ECORD STRING is STRING (l..43);
package RECORD-IO is new INPUT OUTPUT (ITEM RECORD);
IMMEDIATE, DEFERRED : RECORD IO .OUT FILE;

1. procedure OPEN FILES is
use RECORD TO;

begin
CREATE (IMMEDIATE, "external file name");
CREATE (DEFERRED, "external file name");

end OPENFILES;

procedure CLOSE FILES is
use RECORD I0;

* begin
CLOSE (IMMEDIATE);
CLOSE (DEFERRED);

end CLOSE FILES;

procedure GETNEXTRECORD (REC : out RECORDSTRING;
VALID LENGTH,
END_0VDATA : out BOOLEAN) is

I : NATURAL;
beg in

if CHARACTER IO.ENDOF FILE then

ENDOF DATA : TRUE;

else

END OF DATA : FALSE;
I :Z 0;
while not END OF LINE and I < 43 loop

I := I + 17 -
GET (REC(I));

end loop;

VALIDLENGTH := I = 43 and ENDLINE;

V if not END OF LINE then
SKIP LINE;-
advances input to beginning

-- of next line
end if;i end if;

end GET NEXT RECORD;

function VALID RECORD (REC : in RECORD STRING)
i retuLn BOOLEAN is separate;

I1
LIII1.690

I~

procedure WRITE RECORD (REC - in ITEMRECORD) is
use RECORD IO;

begin
case REC.ITEM CODE.SUFFIX of

. when 'N' => WRITE (IMMEDIATE, REC);
when 'X' I 'LI => WRITE (DEFERRED, REC);
others => null;

end case;
end WRITE-RECORD;

procedure WRITE ERROR (REC : in RECORD STRING) is
begi n

PUT("INVALID DATA: & REC);
NEW LINE;

end WRITE ERROR;

function CONVERT (R : RECORD STRING) return ITEMRECORD is

function STRING TO INT (S : STRING) return INTEGER is
VALUE : INTEGER := 0;

beg in
for I in S'FIRST..S'LAST loop

VALUE := 10 * VALUE + CHARACTER'POS(S(I)) -

CHARACTER'POS ('0');
end loop;
return VALUE;

end STRING TOINT;

begin -- body of CONVERT
return (ITEMCODE => (R(I..2),

STRING TO INT (R(3..6)),
R(7)),

DESCRIPTION => R(8..37),
SOURCE -> STRING TOINT (R(38..43)));

end CONVERT;

procedure GET VALIDRECORD (REC : out ITEMRECORD);
END OF DATA : out BOOLEAN) is

S : RECORD STRING;
LENGTH EKRR : BOOLEAN;

begin
loop

GET NEXT RECORD (S , LENGTH-ERROR, ENDOFDATA);
if 'ND__O DATA then

return;
elsif LENGTH ERROR or else not VALIDRECORD(S) then

WRITEERR6R(S);
1. else

REC := CONVERT(S);
return;

end if;
end loop;

end GET VALID RECORD;

end RECORD-HANDLER;

111.700

'I

lseparate (RECORD HANDLER)
function VALID RECORD (REC : in RECORD STRING)

return BOLEAN is

function LETTERS (S : STRING) return 'BOOLEAN Is
beg in

for C in S'FIRST..S'LAST loop
if S(C) not in 'A'..'Z' and S(C) not in 'a'..Iz'

then return FALSE;
end if;

-end loop;

return TRUE;
end LETTERS;

function NUMERALS (S : STRING) return BOOLEAN is
beg in

for C in S'FIRST..S'LAST loop
if S(C) not in 0'..'91 then

return FALSE;
end if;

end loop;

return TRUE;
end NUMERALS;

begin -- body of VALID RECORD
if LETTERS (REC(l..i)) and then NUMERALS (REC(3..6))

and then (REC(7) 'N' or REC(7) a 'L' or REC(7) = 'X')
and then NUMERALS (REC(38..43)) then

return TRUE
else

return FALSE
end if;

end VALID RECORD;

1.7
I

ii2

[SUMMARY

Packages

Records and record aggregates

Case statement

Input-Output

Program Structure

Vi sib ility

Separate Compilation

Ii 111.720

EXAMPLE IV

ENUMERATION TYPES

IV10

!
L!

OBJECTIVES

Enumeration Types

Array Aggregates

Named Parameter Association

II.

i |

package NAVIGATION is

type DIRECTION is (NORTH, EAST, SOUTH, WEST);
type TURN is (LEFT, RIGHT, ABOUT, NONE)

function TURNLEFT (D : DIRECTION) return DIRECTION;
function TURN RIGHT (D : DIRECTION) return DIRECTION;
function TURN ABOUT (D : DIRECTION) return DIRECTION;
function CHANGE COURSE (D : DIRECTION; T : TURN) ;

return DIRECTION;
function MANEUVER (OLD, NEW : DIRECTION) return TURN;

end NAVIGATION;

package body NAVIGATION is

function TURNLEFT (D : DIRECTION) return DIRECTION is

-- declare a local variable to illustrate use

-- of a single return at the end of the body

NEWD : DIRECTION;

begin

case D of
when NORTH => NEW D :- WEST;
when SOUTH => NEW-D := EAST;
when EAST => NEW-D " NORTH;
when WEST => NEW-D := SOUTH;

end case;

return NEWD;

end TURNLEFT

IV. 120

I

function TURN-RIGHT (D : DIRECTION) return DIRECTION is

-- a return statement will appear in each
17. -- alternative of the case statement

begin

case D is
when NORTH => return EAST;
when SOUTH => return WEST;
when EAST -> return SOUTH;
when WEST => return NORTH;

end case;

end TURN RIGHT;

function TURNABOUT (D : DIRECTION) return DIRECTION is

-- look up answer in a constant array

NEW D : constant array (DIRECTION) of DIRECTION
:2 (NORTH => SOUTH ,

SOUTH => NORTH ,

EAST -> WEST ,
WEST > EAST);

begin

return NEW D(D);

end TURNABOUT;

function CHANGE COURSE (D : DIRECTION ; T : TURN
return DIRECTION is

begin

case T is
when LEFT => return TURN LEFT(D);
when RIGHT => return TURN-RIGHT(D);
when ABOUT a> return TURN-ABOUT(D);
when NONE *> return D;

end case;

end CHANGE COURSE;

[IV. 130

I

- function MANEUVER (OLD, NEW DIRECTION) return TURN is

begin

.. if NEW = TURNLEFT(OLD) then
return LEFT;

elsif NEW = TURN RIGHT(OLD) then
return RIGHT;

elsif NEW = TURN ABOUT(OLD) then
return ABOUT;

else
return NONE;

end if;

end MANEUVER;

end NAVIGATION;

I

[
~IV. 240

package NAVIGATION is

type DIRECTION is (NORTH, EAST, SOUTH, WEST)

type TURN is (LEFT, RIGHT, ABOUT, NONE)

function TURNLEFT (D : DIRECTION) return DIRECTION;

function TURN-RIGHT (D : DIRECTION) return DIRECTION;

function TURNABOUT (D :DIRECTION) return DIRECTION;

function CHANGECOURSE (D :DIRECTION; T : TURN)

return DIRECTION;

function MANEUVER (OLD, NEW :DIRECTION)return TURN;

end NAVIGATION;

j IV. 150

[package body NAVIGATION is

function TURN-LEFT ... is

end TURNLEFT;

[- ---------
function TURN-RIGHT ... is

end TURN RIGHT;

[- ---- ---- --
function TURN-ABOUT ... is

end TURN-ABOUT;

function CHANGE-COURSE ... i

end CHANGECOURSE;

function MANEUVER ... is

end MANEUVER;

end NAVIGATION;

IV16

I

ENUMERATION TYPES

type DIRECTION is

(NORTH, EAST, SOUTH, WEST);

OLD D, NEW D : DIRECTION;

OLDD : NORTH;

NEWD :z OLDD;

Predefined attributes:

DIRECTION'FIRST = NORTH

DIRECTION'I.LAST = WEST

DIRECTION'SUCC(EAST) = SOUTH

DIRECTION'PRED(WEST) = SOUTH

DIRECTION'POS(SOUTH) = 2

DIRECTION'SUCC(DIRECTION'LAST) -- raise the exception

DIRECTION'PRED(DIRECTION'FIRST) -- OBJECT ERROR

LIV.170

1!
function TURN LEFT (D : DIRECTION) return DIRECTION is

-- declare a local variable to illustrate use
-- of a single return at the end of the body

NEW D : DIRECTION;

begin

case D is
when NORTH => NEW D WEST;
when SOUTH => NEW-D :- EAST;
when EAST => NEW D := NORTH;
when WEST => NEW-D := SOUTH;

end case;

return NEWD;

end TURNLEFT;

function TURNRIGHT (D : DIRECTION) return DIRECTION is
-- a return statement will appear in each

-- alternative of the case statement

begin

case D is
when NORTH => return EAST;
when SOUTH => return WEST;
when EAST => return SOUTH;
when WEST => return NORTH;

end case;

end TURN RIGHT;

1.

[IV. 180

The order relations between enumeration values follow the

order of listing:

NORTH < EAST < SOUTH < WEST

for D in NORTH .. WEST loop

end loop;

for D in DIRECTION'FIRST .. DIRECTION'LAST loop

end loop;

I IV. 190j

I. Alternate solution to TURN-RIGHT

function TURN-RIGHT (D : DIRECTION) return DIRECTION is

I beg in

if D - DIRECTION'LAST then

I. return DIRECTION'FIRST;

1 else

return DIRECTION'SUCC(D);

end if;

end TURN-RIGHT;

IV20

function TURN ABOUT (D :DIRECTION)return DIRECTION is

-look up answer in a constant array

NEW D :constant array (DIRECTION)of DIRECTION
: (NORTH => SOUTH

SOUTH -> NORTH,
EAST => WEST
WEST ->EAST)

begin

return NEWD(D)

end TURN-ABOUT;

IV-210

jl ARRAY INDEXED BY

ENUMERATION

function TURN ABOUT (D : DIRECTION)

return DIRECTION is

NEW.D : constant array (DIRECTION) of DIRECTION

:- (NORTH => SOUTH,

SOUTH => NORTH,

EAST => WEST,

WEST => EAST);

-- NEW D is a one-dimensional

-- array with four components

-- Each element (or component)

-- may take on one of the

-- enumerated values of type

-- DIRECTION

-- The four elements are

-- denoted by

-- NEWD (NORTH)

-- NEW D(EAST)

-- NEWD(SOUTH)

S- -- NEWD(WEST)

i1V22
[IV. 220 i

ARRAY AGGREGATES

NEW D : constant array (DIRECTION)

of DIRECTION

:= (NORTH -> SOUTH,

SOUTH => NORTH,

EAST => WEST,

WEST -> EAST),

-- NEWD(NORTH) - SOUTH

-- NEW D(SOUTH) = NORTH

-- NEWD(EAST) - WEST

-- NEWD(WEST) = EAST

beg in

return NEWD (D);

end TURN-ABOUT;

I.
[I,,. 230j

f An aggregate denotes an array constructed from component

values.

Examples :

type TABLE is array (..10) of INTEGER;

A : TABLE :=(7,9,5,1,2,4,8,6,0);

A(l) - 7 expressions which define

A(2) - 9 the values to be

A(3) - 5 associated with

• .0 components given by

A(10) -0 position (index

order for array

components)

II.

Iii

B :TABLE :-(5,4,8,1, others => 20);

\ --v

positional

BM1 = 5

B(2) - 4

B(3) -8

B(4) - 1

B(5) thru B(10) = 20

C :TABLE :-(2 1 4 1 10 =>1, others >0)

named
components

C(1) =0

C(2) =1

C(3) =0

C(4) I

C(5) thru C(9) =0

C(l0) - 1

An aggregate must provide values for all components.

The choice "others" stands for all components not specified

by previous choices.

If used, "others* must appear last.

L IV. 250

ftype MATRIX is array (INTEGER range <>, INTEGER range <>)

OF FLOAT;

NULLMATRIX : constant MATRIX

l..10 => (1..10 => 0.0));

An aggregate can be used to give values to components and to

provide bounds for an array object. In this case, the

choice *others" cannot be used.

An aggregate for an n-dimensional array is written as a one-

dimensional aggregate of components that are (n-i)-

dimensional array values.

1 .

I.

[
[IV. 260

, I
I

i

function CHANGE COURSE (D : DIRECTION ; T : TURN)
return DIRECTION is

begin

case T is
when LEFT => return TURN LEFT(D);
when RIGHT a> return TURN-RIGHT(D);
when ABOUT => return TURN-ABOUT(D);
when NONE -> return D;

end case;

end CHANGE COURSE;

Ii

[V 7

-.

function MANEUVER (OLD# NEW :DIRECTION)return TURN is

beg in

if NEW - TURN-LEFT (OLD) then
return LEFT;

elsif NEW a TURN RIGHT(OLD)then
return RIGNT;

elsif NEW - TURN-ABOUT(OLD)then
return ABOUT;

else
return NONE;

end if;

end MANEUVER;

[IV. 280

[I NAMED PARAMETER ASSOCIATION

j[CURRENT DIRECTION, NEXT DIRECTION : DIRECTION;

I
Equivalent subprogram calls:

MANUEVER (OLD => CURRENTDIRECTION,

NEW => NEXTDIRECTION);

MANEUVER (NEW => NEXTDIRECTION,

OLD => CURRENT DIRECTION);

Form -

formalparameter => actual parameter

IV. 290

IV30

type MONTH-NAME is

JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER)

MONTH : MONTHNAME;

if MONTH -DECEMBER and Day =31 then

MOJNTH :JANUARY;

DAY 1

YEAR YEAR + 1I

end if;

L IV. 310

type MONTHNAME is (...) ;

NUMBEROF DAYS : constant array (MONTH NAME) of INTEGER

:- (APRIL I JUNE SEPTEMBER I

NOVEMBER => 30,

FEBRUARY => 28,

others => 31) ;

if DAY = NUMBER OFDAYS (MONTH) then

DAY := ;

if MONTH = DECEMBER then

MONTH JANUARY ;

YEAR YEAR + 1 ;

else

MONTH MONTHNAME'SUCC (MONTH);

end if ;

else

DAY DAY + 1 ;

end if ;

1i. IV. 320

U

-- use of an enumeration as a state indicator

function FIND CHAR (S : STRING; C : CHAR
return NATURAL is

-- function to find the position of the first
-- occurence of a character C in a string S;
-- returns S'LENGTH + I if C is not present;
-- ASSUMES S IS NOT NULL!

STATE : (SEARCHING, FOUND, NOTPRESENT);
POS : NATURAL range I..S'LENGTH;

begin

STATE := SEARCHING;
POS := 1; -- assumes S is not null

loop
if S(POS) = C then

STATE := FOUND;
elsif POS = S'LENGTH then

STATE := NOTPRESENT;
else

POS := POS + 1;
end if;

exit when STATE / SEARCHING;
end loop;

if STATE = FOUND then
return POS;

else -- STATE = NOTPRESENT
return S'LENGTH + 1;

end if;

end FIND CHAR;

1.
1.

[Iv. 33

[begin

1. STATE :=SEARCHING;

loop

if ... then

end if;

exit when STATE 1=SEARCHING;

end loop;

[IV. 340

I

[within the loop-

Iiif S(p05) C then

STATE := FOUND ;

elsif POS , S'LENGTH then

STATE := NOTPRESENT ;

else

POS : POS + 1 ;

end if

* i5

[upon exit from loop-

I. if STATE - FOUND then

return POS;

else -- STATE - NOTPRESENT

return S'LENGTH + 1

end if;

IV. 360

[i -- This function compares two strings, which may not be of equal

-- length. Two strings are equal if they match through the length

-- of the shorter string and the longer string is blank filled

-- beyond that point.

function STRING EQUAL (S1, S2 : STRING) return BOOLEAN Is

type SEARCH STATE is

(EQUAL, NOT EQUAL, SILONGER, 62 LONGER, CHECKING);

[STATE : SEARCH-STATE := CHECKING;

j INDEX : INTEGER range 1..MAX(Sl'LENGTH,S2'LENGTH) : 1;

Ii.Lt.

I.

[.

L
IiJ

[EQUAL STRINGS

I.STRING EQUAL -BEST" , BESr') - TRUE

STRING-EQUAL ' BEST' -BEAT' - FALSE

-STRING-EQUAL
(BET- -BETTER')- - FALSE

STRING-EQUAL ("BET ","BET " -TRUE

STRINGEQUAL (" ,)-TRUE

[IV. 380

function BLANKS (S : STRING) return BOOLEAN is

-Returns true only for a string of all blanks

begin

for I in l.. S'LENGTH loop

If S(I) /= gthen

return FALSE;

end if;

end loop;

return TRUE;

end BLANKS;

U IV. 390

1. egi first check for null strings

if S1'LENGTH = 0 then
if S21LENGTH = 0 then

STATE :EQUAL;
else

STATE :=S2 LONGER;
end if;

elsif S21LENGTH = 0 then
STATE := Si LONGER;

end if;

-check the strings character by character
while STATE - CHECKING loop

if Sl(INDEX) /= S2(INDEX) then
STATE :- NOT EQUAL;

* elsif INDEX - ST'LENGTH then
if INDEX - S21LENGTH then

STATE :=EQUAL;
else

STATE S2_LONGER;
end if;

elsif INDEX =S2'LENGTH then
STATE :- 51 LONGER;

end if;
INDEX := INDEX + 1;

end loop;

-return with value based on current state
case STATE is

when EQUAL -> return TRUE;
when NOT EQUAL => return FALSE;
when S1 rONGER => return BLANKS(SI(INDEX..Sl'LENGTH));
when S2:LONGER =>return BLANKS(S2(INDEX..S2'LENGTH));
when CHECKING =>null; -- this branch is unreachable

end case;
end STRING-EQUAL;

£ IV. 400

[-- This function compares two strings, which may not be of equal
length. Two strings are equal if they match through the length

-- of the shorter string and the longer string is blank filled
ji -- beyond that point.

function STRING EQUAL (S1, S2 : STRING) return BOOLEAN is
type SEARCH §TATE is

(EQUAL7 NOT EQUAL, S1 LONGER, S2 LONGER, CHECKING);
STATE : SEARCH STATE :- CHECKING;
INDEX : INTEGER range I..MAX(S1'LENGTH,S2'LENGTH) := 1;

function BLANKS (S : STRING) return BOOLEAN is
-- Returns true only for a string of all blanks

begin
for I in l.. S'LENGTH loop

if S(I) /=' ' then
return FALSE;

end if;
end loop;
return TRUE;

end BLANKS;

beg in

-- first check for null strings
if S1'LENGTH = 0 then

if S2'LENGTH = 0 then
STATE := EQUAL;

else
STATE : S2 LONGER;

end if;
elsif S2'LENGTH = 0 then

STATE := Sl LONGER;
end if;

-- check the strings character by character
while STATE = CHECKING loop

if Sl(INDEX) /= S2(INDEX) then
STATE :- NOT EQUAL;

elsif INDEX = ST'LENGTH then
if INDEX a S2'LENGTH then

STATE := EQUAL;
else

STATE := S2_LONGER;
end if;

elsif INDEX = S2'LENGTH then
STATE :- S1LONGER;

end if;
INDEX :- INDEX + 1;

end loop;

IV.410

,- --

-return with value based on current state
case STATE is

when EQUAL -> return TRUE;
when NOT EQUAL -> return FALSE;[hnS-7NE >rtr LNSS(NE.S'EGH)
when S2 LONGER =>return BLANKS(S2(INDEX..Sl'LENGTH));

when CHECKING =>null; -- this branch is unreachable[end case;
end STRING-EQUAL;

IV42

SUMMARY

Enumeration Types

Array Aggregates

Named Parameter Association

I IV. 430

V.10

V.11

package MATRIX OPS is

type MATRIX is array (INTEGER range <>, INTEGER range <>)
of FLOAT;

function +0 (A : FLOAT; M : MATRIX) return MATRIX;

function " (MI, M2 : MATRIX) return MATRIX;

function "" (A : FLOAT; M : MATRIX) return MATRIX;

function *" (Ml, M2 : MATRIX) return MATRIX;

end MATRIX OPS;

package body MATRIXOPS is

function w+" (A : FLOAT; M : MATRIX) return MATRIX is

TEMP : MATRIX(M4'FIRST(l)..M'LAST(l) , M'FIRST(2)..M'LAST(2));

beg in

for I in MIFIRST .. MLAST loop
for J in MFIRST(2) .. MLAST(2) loop

TEMP(I,J) := A + M(I,J);
end loop;

end loop;

return TEMP;

end "+";

V. 120

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _i

I

function + (Ml, M2 : MATRIX) return MATRIX is

TEMP : MATRIX(Ml'FIRST..Ml'LAST, Ml'FIRST(2)..MI'LAST(2));

IOFFSET, JOFFSET : INTEGER;

begin

IOFFSET - M2'FIRST(l) - MI'FIRST(l);
JOFFSET : M2'FIRST(2) - Ml'FIRST(2);

for I in Ml'FIRST(l) .. Ml'LAST(l) loop
for J in Ml'FIRST(2) .. Ml'LAST(2) loop

TEMP(I,J) := Ml(I,J) + M2(I + IOFFSET, J + JOFFSET);
end loop;

end loop;

return TEMP;

end "+U;

function " (A : FLOAT; M : MATRIX) return MATRIX is

TEMP : MATRIX(M'FIRST(l)..M'LAST(l), M'FIRST(2)..M'LAST(2));

beg in

for I in M'FIRST(l) .. M'LAST(1) loop

for J in M'FIRST(2) .. M'LAST(2) loop
TEMP(I,J) : A *M(I,J);

end loop;
end loop;

return TEMP;

end ",U

LV.130

function (Ml, M2 :MATRIX)return MATRIX is

TEMP :MATRIX(Ml'PIRST(l)..Ml'LAST(l), M2'FIRST(2)..M2'LAST(2))
OFFSET : constant INTEGER := M2'FIRST(l) - Ml'FIRST(2);1~ beg in
for I in Ml'FIRST(l) .. Ml'LAST(1) loop

for J in M2'FIRST(2) .. M2'LAST(2) loop
* TEMP(I,J) := 0.0;

for K In Ml'FIRST(2) .. M1'LAST(2) loop
TEMP(I,J) :TEMP(I,J) + Ml(I,K) *M2(K + OFFSET, J);

end loop;
end loop;

end loop;

return TEMP;

end *0;

end MATRIX OPS;

V.140

.
package MATRIX OPS is

type MATRIX is array (INTEGER range <>, INTEGER range <>)
of FLOAT;

function "+" (A : FLOAT; M : MATRIX) return MATRIX;

function "+ (Ml, M2 : MATRIX) return MATRIX;

function (A : FLOAT; M : MATRIX) return MATRIX;

function Ml (1, M2 : MATRIX) return MATRIX;

end MATRIX_OPS;

1V.150

I

OVERLOADING OF OPERATIONS

package MATRIX OPS is

function +" (A : FLOAT, M : MATRIX)

return MATRIX;

function i+ (Ml, M2 : MATRIX)

return MATRIX;

end MATRIX OPS;

A function named by a character string is used to define

additional meaning for an operator

.1
~v. 160

|Ill I I

I
j + defined for any numeric type

integer and real)

new meaning :

scalar + matrix

matrix + matrix

. character string must denote

one of operators in language

+ and - permitted for unary

and binary operators

* and / permitted for binary

operators

< , > , >= can be

overloaded; result must

be type boolean

1 V. 170

I
I

I. -- use of MATRIXOPS

- declare

use MATRIXOPS;

A, B : MATRIX(1..10, l..20);

C : MATRIX(11..30, l..30);

D, E : MATRIX(l..10, 1..30);

X, Y : FLOAT;

beg in

-- assume initialization done here

A :X + B ; -- first +

A : 3.5 + B ; -- first +*

A A + B ; -- second "+"

C :m Y * C ; -- first U*"

D := -9.7* E; -- first **

E : A * C ; -- second "

E := D + (A + B) * (5.25 * C) ;

A := A + 1.0 ; -- error : there is no such
-- "+" operation

end; -- of example of usage

1V
I.

LV.180

b'for I in M.iFI'S ...MLAST loop
for J in M'FIRST(2) .. M'LAST(2) loop

TEMP(I,J) ==A + M(I,J);
~end loop ;

end loop;

V.19

functon TE(A: LA; 4:MTRX)reunMAR;i

t
TEP:MTI(MFRTI).'ATl 'IRT2.MLS())

[e no nMFRT. 'ATlo
-- foV.n190ST2 . 'AT()loj TEM(IJ : A4 141,3)

function +n(A :FLOAT ;M :MATRIX) return MATRIX is

subtype ROWS is INTEGER range M'FIRST(1) .. M'LAST(1);

subtype COLS is INTEGER range M'FIRST(2) .. M'LAST(2);

TEMP : MATRIX(ROWS, COLS);

begin

for I in ROWS loop

for J in COLS loop

TEMP(I,J) :A + M(I,J);

end loop;

end loop;

return TEMP;

end "+";

L V.200

function "n+in A :FLOAT; M :MATRIX)return MATRIX is

TEMP :MATRIX (M'FIRST(l) .. MILAST(l),
M'FIRST(2) .. M'LAST(2))

I * begin

end 0+0;

will return TEMP; attributes taken from actual parameters

M'FIRST(i) lower bound of i-tb index

M'LAST(i) upper bound of i-th index

I.. V. 210

!

Object declaration

A MATRIX (-5..5, l..20) 41 I I Iii

A'FIRST(l)--' I I

SA'LAST(1) -------' I

A'FIRST(2) -------- I

A'LAST(2)-------------

When the declaration "TEMP : ... ' is elaborated, an object hav-

ing 11 rows and 20 columns will be created.

[V.220

I

I A := A + 1.0; -- SYNTAX ERROR

i.

+ not defined for matrix

as first parameter and

scalar as second parameter

could add

function +0 (M:MATRIX; A:FLOAT)
return MATRIX is

begin

return A + M;

end "+";

to MATRIX OPS

V.230

-AL -----

function in 41 M, M2 :MATRIX)return MATRIX is

TEMP :MATRIX(M1'FIRST..Ml'LAST, Ml'FIRST(2)..MVILAST(2))
IOFFSET, JOFFSET : INTEGER;

begin

IOFFSET :-M2'FIRST(l) - Ml'FIRST(l);-
3OFFSET :=M2'FIRST(2) - Ml'FIRST(2);

for I in Ml'FIRST(l) .. M1'LAST(l) loop
for J in Ml1FIRST(2) .. Ml'LAST(2) loop

TEMP(I,J) :Ml(I,J) + 142(I + IOFFSET, 3 + 3OFFSET);
end loop;

end loop;

return TEMP;

end ;

[V. 240

function +~(Ml,M2:MATRIX) return MATRIX is

TEMP : MATRIX (Ml1FIRST..M1LAST,

Ml'FIRST(2) ..Ml'LAST(2)

indices of returned matrix

taken from left operand

object declarations-

S,T : MATRIX (1..4,1..6);

U : MATRIX (-3..0,10..15);

S + T and S + U return a

4x6 matrix with indices

l..4 x l..6

U + S returns a 4x6 matrix

with indices -3..O x 10..15

V.250

[discrete range for loops taken from first operand

I.S + U for I in l..4 loop

for J in l..6 loop

U + S for I in -3..O loop

for J in l0..15 loop

j V.260

--OFFSET

Consider U + S

------- + JOFFSET -------I)
I I

U_3..0 1 0 ..15 + S1..4,1..6

I I
1 I

-------- -+ IOFFSET--------

IOFFSET " M2'FIRST(1) - MI1'FIRST(1)

= 1 - (-3)

= 4

JOFFSET M2'FIRST(2) - Ml'FIRST(2)

= 1 - 10

= -9

V.7

LV.270

I,
I

1.

TI

function *" (A : FLOAT; M: MATRIX) return MATRIX is

TEMP : MATRIX(M'FIRST(l)..M'LAST(l), M'FIRST(2)..M'LAST(2));

begin

for I in M'FIRST(2) .. M'LAST(l) loop
for J in M'FIRST(2) .. M'LAST(2) loop

TEMP(IJ) := A * M(I,J);
end loop;

end loop;

return TEMP;

end **

IV

L

Ii

£ V. 280

function * (Ml, M2 : MATRIX) return MATRIX is

TEMP : MATRIX(MI'FIRST(1)..Ml'LAST(l), M2'FIRST(2)..M2LAST(2) };

OFFSET : constant INTEGER :- M2'FIRST(l) - M1'FIRST(2);

begin

for I in Ml'FIRST(l) .. MlLAST(l) loop
V for J in M21FIRST(2) .. M2'LAST(2) loop

TEMP(I,J) :- 0.0;
for K in Ml'FIRST(2) .. Ml'LAST(2) loop

TEMP(I,J) -= TEMP(I,J) + Ml(I,K) * M2(K + OFFSET, J);
end loop;

end loop;
end loop;

return TEMP;

end U*";

.

ii

IV. 290

[MATRIX MULTIPLICATION

Amxn x Bnxp >Cmxp

Product of two matrices is

defined only when number of

columns in first matrix is

equal to the number of rows

in the second.

N

c1 j > aik x bkj

k-i

L V.300

[function " (Ml,M2 :MATRIX) return MATRIX is

[TEMP: MATRIX (Ml'FIRST(l)..MlILAST(l),

I M2'FIRST(2)..M2'LAST(2))

[Object declarations-

S :MATRIX (l..4,1..6);

J T :MATRIX (1..6,1..2)

U MATRIX (l..8,1..4);

S * T returns a 4x2 matrix

with indices l..4 x l..2

U * S returns a 8x6 matrix

j with indices 1..8 X l..6

T * S is undefined

[V.310

'1il

EXCEPTIONS

ii v. 320

Isubprogram specification is

declarative_part

begin

Isequence of I
I statements

exception

I I \ optional.
IexceptionI

handTer I

end;

V.33

I

I Exception handler defines action to be taken when
specific excep-

tions are raised.

declare procedure

begin begin

exception exception

end; end;

L V.340

I
J Form of exception handler

when exception choices =>

sequence of statements

exceptionchoices

exception_name

others -- must appear last

Example

exception

when OBJECT ERROR =>

PUT (a...");

when OVERFLOW I UNDERFLOW =>

PUT ("...");

when others =>

I. PUT (...);

[
[V.350

function +~(MlM2 MATRIX)

I return MATRIX is

defined only if Ml and M2

have same number of rows

and same number of columns

function flU(Ml,M2 : MATRIX

return MATRIX is

defined only if nunber of columns

of Ml is equal to number of

rows of M2

1 V.360

I
!

0-

package MATRIX OPS is

type MATRIX is array (INTEGER range <>, INTEGER range <>)
of FLOAT;

SIZE ERROR : exception;

function + (A : FLOAT; M : MATRIX) return MATRIX;

function +" (Ml, M2 : MATRIX) return MATRIX;
-- may raise exception SIZEERROR if M1 and M2
-- are not the same size

function m, (A : FLOAT; M : MATRIX) return MATRIX;

function *' (Ml, M2 : MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if the number
-- of columns of Ml is not iqual to the number
-- of rows of M2

end MATRIX OPS;

package body MATRIXOPS is

function "@" (A : FLOAT; M MATRIX) return MATRIX is

TEMPs: MATRIX(M'first(l)..M'LAST(l) , M'FIRST(2)..M'LAST(2));

beg in

for I in M'FIRST .. M'LAST loop
for J in M'FIRST(2) .. M'LAST(2) loop

* TEMP(I,J) A + M(I,J);
end loop;

end loop;

return TEMP;

end "+";

I.

LV.370

... k z... .. II

function (Ml, M2 : MATRIX) return MATRIX is

-may raise exception SIZE ERROR

TEMP : MATRIX(M1'FIRST..M1LAST, Ml'FIRST(2)..Ml'LAST(2))
IOFFSET, JOFFSET i INTEGER;

begin

if Ml'LENGTH(l) /~M2'LENGTH(l) or
Ml'LENGTH(2) /~M2'LENGTH(2) then
raise SIZE ERROR;

end if;-

IOFFSET :=M2'FIRST(l) - Ml'FIRST(l);
JOFFSET M2'FIRST(2) - M1'FIRST(2);

for I in Ml'FIRST(l) .. Ml'LAST(l) loop
for J in f41'FIRST(2) .. MILAST(2) loop

TEMP(I,J) :=Ml(l,J) + M2(I + IOFFSET, J + JOFFSET);
end loop;

end loop;

return TEMP;

end "+";

function " (A FLOAT; M :MATRIX)return MATRIX is

* TEMP :MATRIX(M'FIRST(l)..M'LAST(l), M'PIRST(2)..M'LAST(2))

begin

for I in M'FIRST(l) .. MILAIT(l) loop
for J in M'FIRST(2) .. M'LAST(2) loop

TEMP(I,J) :=A *M(I,J);
-- end loop;

end loop;

return TEMP;

I. end

[V.380

I3

I

function * (Ml, M2 : MATRIX) return MATRIX is

-- may raise exception SIZE ERROR

TEMP : MATRIX(MI'FIRST(l)..Ml'LAST(l), M2'FIRST(2)..M2'LAST(2));

OFFSET : constant INTEGER := M2FIRST(l) - M'FIRST(2);

begin

if MI'LENGTH(2) /= M2'LENGTH(l) then

raise SIZE ERROR;
end if; -

for I in M1'FIRST(l) .. Ml'LAST(1) loop
for J in M2'FIRST(2) .. M2'LAST(2) loop

TEMP(I,J) :- 0.0;
for K in Ml'FIRST(2) .. M1'LAST(2) loop

TEMP(I,J) := TEMP(I,J) + Ml(_,K) * M2(K + OFFSET, J);
end loop;

end loop;
end loop;

return TEMP;

end U,.;

end MATRIX OPS;

.£ V.9

I

I Exceptions Raised by Packages

4.

package MATRIX OPS is

type MATRIX is array (INTEGER range <>, INTEGER >) of FLOAT;

SIZE ERROR : exception;

function + (A : FLOAT; M : MATRIX) return MATRIX;

function +. (MI, M2 : MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if Ml and M2
-- are not the same size -

function ** (A : FLOAT; M : MATRIX) return MATRIX;

function *" (MI, M2 : MATRIX) return MATRIX;
-- may raise exception SIZE ERROR if the number
-- of columns of Ml is not iqual to the number
-- of rows of M2

end MATRIXOPS;

V.400

[USER DEFINED EXCEPTIONS

Exception declaration

identifier list : exception;

SIZE ERROR : exception;

Raise statement

raise exceptionname;

raise SIZE ERROR;

.

V.1

'I 1. Exam pie

package MATRIX OPS is

SIZE ERROR : exception;
.. .

end MATRIXOPS;

package body MATRIXOPS is

function * (M1,M2 : MATRIX)
return MATRIX is

begin
if MI'LENGTH(2) /= M2'LENGTH(1) then

raise SIZEERROR;
end if;

end "*";

end MATRIX OPS;

IV

[v.420

!

[Handling Exceptions

declare

I. use MATRIX OPS;

A,B : MATRIX (1..10,1..20);

begin

C : A * B; -- causes SIZE ERROR

E :m *.*

end;

This block does not have local

handler. Should SIZEERROR be

raised, it will be propogated

to enclosing unit.

iV

L
[V.430

I

I Handling Exceptions

When exception is raised and
._ ,propogated to unit with local

handler execution of handler

replaces execution of remainder
of unit.

Handler "acts" as substitute for
corresponding unit.

* handler has acce~s to
parameters

* handler can issue a
return

If no handler exists for exception,
program will terminatel

1.

[V.440

I Handling Exceptions

procedure P is

ERROR :exception;

beg in

raise ERROR; -- This exception is handled

-- by El

exception

when ERROR > . -handler El

end P

[V.450

Handling Exceptions

procedure P is
°be.

ERROR : exception;
bee

procedure Q is
beg in

raise ERROR;
-- This exception is handled by E2.

exception

when ERROR => ...; -- handler E2
-- After execution of the handler, Q returns
-- normally, unless the handler executes a
-- raise statement.
-- Execution of "raise;" would propogate
-- ERROR out to P, where it would be handled by El.

end Q;

beg in

0;

exception

when ERROR => ... ; -- handler El

end P;

-L -V.460

I

I Handling Exceptions

procedure P is

• ERROR : exception;

procedure R is
begin

r;ise ERROR;
-- Since there are no handlers in R, its execution
-- will be terminated and the exception will be
-- propogated to the calling subprogram.

end R;

procedure Q is
begin

-- An ERROR exception raised by this call to
-- R is handled by handler E2.

exc;pion

,hen ERROR => ... ; -- handler E2
end Q;

beg in

R; -- An ERROR exception raised by this call to

-- R is handled by handler El.

exception

when ERROR => ...; -- handler El
'4 end P;

[V.470

I

Exceptions in Example III

procedure GETVALIDRECORD (REC : out ITEM RECORD;
END OF DATA : out BOOLEAN) is

S : RECORD STRING;
LENGTHERROR : BOOLEAN;

beg in
loop

GET NEXT RECORD (S , LENGTHERROR);
if LENGTH ERROR or else not VALID RECORD then

WRITE ERROR (S);
else

REC : CONVERT (S);
exit;

end if;
end loop;
-- exit from loop only occurs when good record found
-- or when an END ERROR exception occurs in
-- GET NEXT RECORD
END OF-DATA-:= FALSE;

exception-
when END ERROR => END OFDATA := TRUE;

end GET VALTDRECORD;

GETVALIDRECORD calls GETNEXTRECORD

GET NEXT RECORD calls GET

GET is a procedure defined in the standard package TEXT 10 and

ENDERROR is an exception defined in that package which can

result from a call to GET.

Since there is no handler in GETNEXTRECORD, that procedure

terminates and the exception is propogated on to

GET VALID RECORD, where it is "handled" by the exception handler

shown above.

NOTE : A normal return from GET VALID RECORD follows.

V.480

Exceptions in Example III

Suppose we want to terminate the loop in PROCESSRECORDS using an

exception when no more records are available. The following

redefinition of RECORD HANDLER would be appropriate.

package RECORD HANDLER is

type ITEM RECORD is
record

ITEMCODE : record
PREFIX : STRING(l..2);
NUMBER : range 0..9999;
SUFFIX : CHARACTER;

end;
DESCRIPTION : STRING(l..30);
QUANTITY : range 0..999999;

end ITEMRECORD

procedure OPENFILES;

procedure CLOSE FILES;

procedure GET VALIDRECORD (REC : out ITEM RECORD);

NO MORE RECORDS : exception;
-- This exception is raised by GET VALID RECORD
-- when the end of the input file i's encountered.

procedure WRITE-RECORD (REC : in ITEM RECORD);

end RECORD HANDLER;

L V.490

I

* Exceptions in Example III

PROCESS RECORDS could depend on the exception

NO MORE RECORDS:

with RECORDHANDLER;

procedure PROCESS RECORDS is

use RECORD HANDLER;

ITEM : ITEMRECORD; -- defined in RECORD HANDLER

begin

OPEN FILES;

loop

GETVALIDRECORD (ITEM,NOMORE RECORDS);

WRITE RECORD (ITEM);

end loop;

exception

when NO MORERECORDS => CLOSE FILEb;

end PROCESS RECORDS;

I V. 500

*I1

J Exceptions in Example III

The body of GETVALIDRECORD changes slightly.

procedure GET VALID RECORD (REC : out ITEM RECORD) is
S : RECORD-STRING;
LENGTHERR'OR : BOOLEAN;

begin
loop

GET NEXT RECORD (S , LENGTH ERROR);
if IENGTH ERROR or else not VALID RECORD then

WRITEERROR (S);
else

REC := CONVERT (S);

exit;
end if;

end loop;
-- exit from loop only occurs when good record found
-- or when an END ERROR exception occurs in
-- GET NEXTRECOR15

exception-
when END ERROR => raise NO MORERECORDS;

end GET VALTD_RECORD;-

The END ERROR exception is handled, as before,

but the handler raises the new NOMORE RECORDS

exception defined in the specification part of

this package.

I

I.

- V.510

I SUMMARY

overloading

Exceptions

packages and Exceptions

Ii. V.520

EXMLEV
LITPOESN

L110

OBJECTIVES

Access Types

Data Abstraction

Gene ri~cs

Discrimuinants

Variant Records

I.11

List Processing

-- The following is an example of a list processing package,

making use of access types for dynamic allocation of list nodes.

package SORTED-LIST is

type LIST is private;

type PRIORITY-TYPE is new NATURAL; -- derived type

procedure CREATE (HEADER : out LIST);

procedure INSERT (HEADER : in out LIST;
INFO : INFO TYPE;

7 PRIORITY : FRIORITYTYPE);

procedure NEXT ENTRY (HEADER : in out LIST;
-- INFO : out INFO TYPE;

PRIORITY : out PRIORITY TYPE);

EMPTYLIST : exception; -- can be raised by NEXT-ENTRY

private

type NODE; -- incomplete type declaration
type LIST is access NODE;
type NODE is

record
PREVIOUS : LIST;
PRIORITY : PRIORITY TYPE;
INFO : access INFO TYPE;
NEXT : LIST;

end;

end SORTED LIST

-- The procedures in this package maintain a list
-- of items, sorted by priority (increasing). The procedure
-- CREATE must be called each time a new list
-- is desired. During the execution of a program
-- any number of lists may exist. A call to NEXT ENTRY
-- returns the info and priority for the first ifem
-- and removes this entry from the list.

I

i VI.120

I

package body SORTED LIST is

procedure CREATE (HEADER : out LIST) is
begin -- Build a dummy node to represent an empty list

HEADER :- new NODE (PRIORITY > 1, INFO -> null,
PREVIOUS -> null, NEXT -> null);

HEADER.PREVIOUS :- HEADER; HEADER.NEXT : HEADER;
end CREATE;

procedure INSERT (HEADER : in out LIST;
INFO : INFO TYPE;
PRIORITY : 'PRIORITY TYPE) is

PTR : LIST;
begin

PTR := HEADER.NEXT;
while PTR /- HEADER and

PRIORITY <- PTR.PRIORITY loop
PTR :- PTR.NEXT;

end loop;
--PTR now references the record which will follow
--the new record in the list.
PTR.PREVIOUS.NEXT := new NODE (PTR.PREVIOUS, PRIORITY,

new INFO TYPE(INFO), PTR);
PTR.PREVIOUS :- PTR. PREVIOUS.NEXT;

end INSERT;

procedure NEXT ENTRY (HEADER : in out LIST;
INFO : out INFO TYPE;
PRIORITY : out PRIORITY TYPE) is

FIRST : LIST := HEADER.NEXT;
beg in

if FIRST - HEADER then
raise EMPTY LIST;

end if;
PRIORITY :- FIRST.PRIORITY;
INFO :- FIRST.INFO.all;
FIRST :- FIRST.NEXT;
HEADER.NEXT :- FIRST;
FIRST.PREVIOUS : HEADER;

end NEXT ENTRY;

end SORTED LIST;

I.
L vI.13o

INTRODUCTION TO ACCESS TYPES

L (LINKED LISTS)

AL (IJ

LAS

type NODE; -- incomplete type declaration;

type NODEPTR Is access NODE;

type NODE is

record

WORD : STRING(l..3);

NEXT : NODEPTR;

1. end record;

Object declaration:

FIRST, LAST : NODE -PTR;

[V1.140

I FIRST :a new NODE (ALLnull);

!

11 ~Z(R3r

Ii

FIRST.WORD = "ALL

FIRST.NEXT = null

I
FIRST.NEXT := new NODE

WORD => "BUT",

NEXT => null);

{i

[FIRST.NEXT.WORD O BUT"

vI. 15o
...I

I
LAST := new NODE (NEXT => null, WORD > THEN);

TTT

1.
LAST

FIRST.NEXT.NEXT - LAST;

LA5

I

SVI. 160

I

[To print the WORD 'fields of the records (assume zero or

more nodes):

2 declare

T : NODE PTR :- FIRST;

begin

while T /- null loop

PUT (T.WORD);

NEW_LINE;

T :- T.NEXT;

end loop;

end;

I
[

I

.....I.

I DOUBLY LINKED LIST

HE ADE P.

Maintain a list of items sorted by priority (decreasing)

PROCEDURES:

CR EATE

INSERT

NEXTENTRY

II18

IPREVIOUS IPRIORITY IINFO INEXT

type INFO-TYPE is ...

Itype PRIORITY TYPE is..

1 type NODE;

-~ type LIST is access NODE;

type NODE is

record

PREVIOUS : LIST;

PRIORITY : PRIORITY-TYPE;

INFO : access INFO-TYPE;

NEXT : LIST;

1 end record;

type LIST is access NODE;

I VI. 190

I I

PRIVATE TYPE

J package SORTED-LIST is

type LIST is private;

procedure CREATE (...); visible

procedure INSERT (...); part

procedure NEXT ENTRY (...);

EMPTY LIST : exception;

private

type NODE;
type LIST is access NODE;
type NODE is

record private
' part

end record;

end SORTED LIST;

Name of type and operations specified in visible part are

available.

Names of fields are not visible.

I.

IMIi

Iom

procedure CREATE

(HEADER: out LIST)is

I beg in

HEADER :=new LIST

(PRIORITY =

j INFO =>null,

PREVIOUS => null,

JNEXT => null)

HEADER.PREVIOUS := HEADER;

HEADER.NEXT :HEADER;

end CREATE;

HEADER

[V1.210

(/ROCE044RE -73)EAeT

ED1

TBEFORE

VI .215

procedure INSERT (HEADER :in out LIST;
INFO : INFO TYPE;
PRIORITY : RIORITY TYPE) is

PTR :LIST;

beg in

PTR :=HEADER.NEXT;

while PTR /- HEADER and
PRIORITY <- PTR.PRIORITY loop

PTR :- PTR.NEXT;
end loop;

--PTR now references the record which will follow
--the new record In the list.

PTR.PREVIOUS.NEXT := new NODE (PTR.PREVIOUS, PRIORITY,
new INFO TYPE(INFO), PTR);

PTR.PREVIOUS :=PTR.PREVIOUS.NEXT;

end INSERT;

L VI.220

procedure INSERT is.....i

begin

PTR :- HEADER.NEXT;

-while PTR /- HEADER and
PRIORITY <- PTR.PRIORITY loop

PTR z- PTR.NEXT;

end loop;

upon exit from loop:

31.

j VI.230

new LIST CPTR.PREVIOUS,

PRIORITY,

new INFO TYPE(INFO),

PTR)

PTR

VI. 240

'I PT R

00:

PTR.PREVIOUS.NEXT : new LIST(...);

PTR

0000

PTR.PREVIOUS :=PTR.PREVIOUS.NEXT;

P -R

00060

L VI o250

J INSERT at end of list

PTR /- HEADER is true

PRIORITY <= PTR.PRIORITY is true

PTR

PTR /- HEADER is false

loop terminates

VI.260

FrR
PTR. PREVIOUS. NEXT :-new LIST(...)

PrR

PTR.PREVIOUS :PTR. PREVIOUS. NEXT;

V.27j

INSERT first item

loop terminates immediately with

PTR =HEADER

HEAD~ER _ _ _ _

$ PTdQ

PTR.PREVIOUS.NEXT :=new LIST(.)

hPTR.PREVIOUS, : T.RVOU.E

I VI.280

I PROCEDURE NEXT-ENTRY

I0

PRIORITY :=FIRST.PRIORITY ~-

INFO :=FIRST.INFO.all;

1.29

FXRSr
FIRST :FIRST.NEXT;

HEADER.NEXT: FIRST;

FIRST.PREvIous : HEADER;

I rAC

S.o% V.0

FIRST UFIRST.NEXT;

r-MR3T
HEADER.NEXT :FIRST;

REAORS?

FIRST.PREVIOUS :uHEADER;

J ~:~vr VI.300

I

-- The following is an example of how SORTEDLIST might be used.
The package is declaied inside of this procedure so that use

-- may be made of a local definition of INFO TYPE.

Procedure PRINT HANDLER;

type INFO TYPE is
record

end record;

package SORTED LIST is
-- specificition part as defined previously,
-- using INFO TYPE as just declared

end SORTED LIST;-

use SORTED LIST;

PRINT QUEUE : LIST;
PRIORITY : PRIORITY TYPE;
DESCRIPTOR : INFOTYPE;

package body SORTED LIST is
-- as defined previously

end SORTEDLIST;

begin -- body of PRINT HANDLER:

CREATE (PRINTQUEUE);

-- assume some value has been given to DESCRIPTOR

INSERT (PRINT-QUEUE, DESCRIPTOR, 2);

NEXT-ENTRY (PRINT-QUEUE, DESCRIPTOR, PRIORITY);

end PRINT HANDLER;

1.

Ii

L VI.*310

I

I
Example VI
Version 2

Introduction to Generics
T

-- A more general list processing package definition is now
-- presented, making use of the generic definition feature.

-- Since the package does not depend on the details of INFO TYPE,
-- it is now supplied as a generic parameter of the package-.

generic
type INFO TYPE is private;

package SORTEDLIST is

type LIST is private-

type PRIORITY-TYPE is new NATURAL; -- derived type

procedure CREATE (HEADER : out LIST);

procedure INSERT (HEADER : in out LIST;
INFO : INFO TYPE;
PRIORITY : PRIORITY.TYPE);

procedure NEXT ENTRY (HEADER : in out LIST;
INFO : out INFO TYPE;
PRIORITY : out PRIORITYTYPE);

EMPTY-LIST : exception; -- can be raised by NEXT-ENTRY

private

type NODE;
type LIST is access NODE;
type NODE is

record
PREVIOUS : LIST;
PRIORITY : PRIORITY TYPE;
INFO : access INFO FYPE;
NEXT : LIST;

end record;

end SORTED LIST

Ii i

I VI. 320

I
-- The procedures in this package maintain a list
-- of items, sorted by priority (increasing). The procedure
-- CREATE must be called each time a new list
-- is desired. During the execution of a program
-- any number of lists may exist. A call to NEXT ENTRY

-- returns the info and priority for the first ifem
-- and removes this entry from the list.

package body SORTED-LIST is

procedure CREATE (HEADER : out LIST) is
begin -- Build a dummy node to represent an empty list

HEADER :- new NODE (PRIORITY -> 1, INFO => null,
PREVIOUS => null, NEXT -> null);

HEADER.PREVIOUS :- HEADER; HEADER.NEXT :- HEADER;
end CREATE;

procedure INSERT (HEADER : in out LIST;
INFO : INFO TYPE;
PRIORITY : PRIORITY TYPE) is

PTR : LIST;

beg in
PTR := HEADER.NEXT
while PTR /- HEADER and

PRIORITY <= PTR.PRIORITY loop
PTR :- PTR.NEXT;

end loop;
--PTR now references the record which will follow
--the new record in the list.
PTR.PREVIOUS.NEXT :- new NODE (PTR.PREVIOUS, PRIORITY,

new INFO TYPE(INFO), PTR);
PTR. PREVIOUS := PTR. PREVIOUS.NEXT;

end INSERT;

procedure NEXT ENTRY (HEADER : in out LIST;
INFO : out INFO TYPE;
PRIORITY : out PRIORITY TYPE) is

FIRST : LIST := HEADER.NEXT;
beg in

if FIRST - HEADER then
raise EMPTY LIST;

end if;
PRIORITY :- FIRST.PRIORITY;
INFO a FIRST.INFO.all;
FIRST :u FIRST.NEXT;
HEADER.NEXT :- FIRST;

K. FIRST.PREVIOUS -* HEADER;
end NEXT-ENTRY;

end SORTED LIST;

VI. 330

I

GENERIC PROGRAM UNITS

J"Models* of program units.

Can be parameterized:

Generic instantiation creates a copy (instance) of a
generic prooram unit which can be used directly as
ordinary program units.

A generic subprogram:

genericItype ELEMENT is private;
procedure EXCHANGE (X,Y : in out ELEMENT) is

TEMP : constant ELEMENT := X;
begin

X := Y;
Y " TEMP;

end SWAP;

Declarations with generic instantiation:

procedure SWAP INT is new EXCHANGE (INTEGER);
procedure SWAP-CHAR is new EXCHANGE (ELEMENT => CHARACTER);

Overloading a procedure name:

procedure SWAP is new EXCHANGE (INTEGER);I procedure SWAP is new EXCHANGE (CHARACTER);

VI.340

I

-- The package SORTED LIST may now be treated as a library package,
-- with a particular type being supplied for INFO TYPE when an
-- instance of the generic package is created. PRINTHANDLER
-- is now reconsidered using this new approach.

with SORTED LIST;

procedure PRINTHANDLER is

type PRINT DESCRIPTOR is
record

end:,'*

package PRINT LIST is
new SORTED LIST (INFO TYPE m> PRINT DESCRIPTOR);

use PRINT-LIST;

PRINT QUEUE : LIST;
PRIORITY : PRIORITY TYPE;
DESCRIPTOR : PRINT DESCRIPTOR;

begin -- body of PRINT-HANDLER:

CREATE (PRINT QUEUE);

-- assume some value has been given to DESCRIPTOR
INSERT (PRINT QUEUE, DESCRIPTOR, 2);

NEXT ENTRY (PRINT QUEUE, DESCRIPTOR, PRIORITY);

* end PRINT HANDLER;

VI.350

E

[
Definition of generic package:

generic
type INFO TYPE is private;

package SORTID LIST is

end SORTED LIST

Instantlation of generic package:

with SORTED LIST;
procedure PRINT DESCRIPTOR is

type PRINT DESCRIPTOR is
record -

end';cord;

package PRINT LIST is
new SORTED LIST (INFO TYPE -> PRINT DESCRIPTOR);

/

end PRINT DESCRIPTOR;

SI I III
<---I-... I I I II--->

I _ _ _I _ _ _I I I _ _ _I

an object of type

PRINT DESCRIPTOR

Li VIti

I GENiERIC INSTANTIATION

I The instantiation 'brings into existance" the procedures

PRINT LIST.CREATE (...

PRINT LIST.INSERT (...

and

PRINTwLIST.NEXTENTRY (..

which perform operations on a doubly linked list in
which one component of each node is a pointer (access type)
to a record to type PRINT-DESCRIPTOR.

-- Instantiation

package L is
new SORTED LIST T)

-- Procedure call

L.INSERT(...)

will insert a record into the list in which one component
is a pointer to an object of type T

..

Ii
£ -- -- -- VI,370

I [OTHER GENERIC PARAM4ETER FORMS

type identifier is 1<>); -- denotes any discrete type

generic
'type T is(>)

function NEXT IN-CYCLE (X T) return T is
beg in

if X - T'LAST then
return T'FIRST

else
return T'SUCC(X)

end If;
end NEXTINCYCLE;

type DIRECTION Is (NORTHEAST,SOUTHWEST);

type WEEKDAY is (MON, TUES, WED, THUR, FRI);

function TURN RIGHT is new NEXT IN CYCLE (DIRECTION);

function NEXT WEEKDAY is new NEXT INCYCLE (WEEKDAY);

TURN RIGHT(EAST) - SOUTH

TURN RIGHT(WEST) - NORTH

NEXT WEEKDAY(TUES) WED

NEXT WEEKDAY(FRI) - MON

i.

I

[DISCRIMINANTS

[Provides a form of "dynamic" parameterization; value of
discriminant need not be known at translation time.

Object of record type with discriminant may be a

constrained object or an unconstrained object (dynamic
allocation).

Discriminant may be used
(a) as a bound of an index constraint
(b) to specify a discriminant value

in a discriminant specification
(c) as a discriminant name of a variant

part

Discriminant must be a discrete type

I.

VI. 390

I

Example:

1. MAX MESSAGE SIZE : NATURAL :- 1000;

-. type BUFFER TYPE (SIZE : INTEGER ran e
r r O..MAX MM E SIZE) is:o r e c o r d--

ADDRESS:..

MESSAGE • STRING (I..SIZE);
end record;

Constrained Object

IN BUFF : BUFFER TYPE(500);

I I I
I 500 I II _ _ _ _ _ I _ _ _ _ _ _ I _ _ _ _ _ _ __ I

INBUFF.SIZE IN BUFF.ADDRESS IN BUFF.MESSAGE(1..500)

OUT BUFF • BUFFER TYPE(SIZE -> 25);

1 I I

25

OUT BUFF.SIZE OUT BUFF.ADDRESS OUT BUFF.MESSAGE(1..25)

I.

Iii

I

[Unconstrained object

Ii declare

A BUFFER " BUFFER-TYPE; -- discriminant omitted

DESTINATION: . .

FULL LINE : STRING (l..MAX MESSAGE SIZE);

ACTUAL LENGTH : NATURAL :- 0;

beg in

GET MESSAGE(DESTINATION, FULL LINE, ACTUAL LENGTH);

A-BUFFER :- (ACTUAL LENGTH, DESTINATION,
FULLLINE(l..ACTUAL LENGTH));

end;

If GETMESSAGE returns a value of 475 as the value of ACTUAL-LENGTH,

the effect of the assignment statement is to create the record

I 475 I value of I value of FULL LINE(l..475)
I DESTINATION I

I I I _I

Ii

[vI.41o0

I VARIANT RECORDS

>1 ---- I--- > i----->1 null

POINTER IRECTANGLE I LINE

A list of records, each of which have certain objects in
1.common. The remaining components depend on the value of

some other component which is called the udiscriminantw.

VI42

j VARIANT PART

Variant part specifies alternative record components. Each
variant defines the components which exist for a specific
value of the discriminant.

DISCRIMINANT:

Special component of records.
Discriminant must be a discrete type.

Provides a form of "dynamic' parameterization; value
of discriminant need not be known at translation time.

I I

RECTANGLE discriminant I LINE

I I--~-------------
fixed part I ..-

I _____I-------------I_ __

2.5 variant part I 4.8
I I

5.0

I

type record-type (discriminant :discriminant type) is

record

-- object declaration(s)

-- fixed part

-- (optional)

case discriminant is

when choice -> component-list;

when choice *> component-list;

end case;

end record;

Each value of the discriminant must be represented once and

only once in the set of choices.

[VI.440

I

type COORDINATES is
record

X, Y : FLOAT;
T end record;

type DEGREES is new FLOAT;
-- derived type; differentiate from
-- length measurements

type SHAPE-TYPE is (SQUARE, RECTANGLE, LINE, ARC, CIRCLE);

type FIGURE (SHAPE : SHAPE-TYPE) is

record

COLOR : (RED, GREEN, BLUE);

LINE STYLE : (SOLID LINE, DOTTED LINE);

POSITION : COORDINATES;

ANGLE : DEGREES;

case SHAPE is

when SQUARE => SIZE : FLOAT;

when RECTANGLE => HEIGHT, WIDTH : FLOAT;

when LINE => LENGTH : FLOAT;

when ARC -> RADIUS : FLOAT;

ARCLENGTH : DEGREES;

when CIRCLE z> DIAMETER : FLOAT;

end case;

end record;

I.

VI. 4 50

[RECORD AGGREGATES

Using positional notation:

(RECTANGLE, RED, SOLID LIN4E, (1.5, 3.4), 45.0, 2.5p 5.0)

discriminant must appear first

Using named components

(COLOR -> RED, LINE-STYLE a> SOLID-LINE,

POSITION -> (1.5, 3.4) ,

ANGLE ->45.0, SHAPE ->RECTANGLE,

HEIGHT ->2.5, WIDTH ->5.0)

L VI.460

I An Application

j type ITEM;

type POINTER is access ITEM;

type ITEM is
record

NEXT ITEM : POINTER;
COMPONENT : FIGURE;

end record;

PICTURE : POINTER;

PICTURE :- new ITEM (null, (RECTANGLE, o.. , 2.5, 5.0));

PICTURE.NEXT ITEM := new ITEM (null, (LINE, ... , 4.8));

T T I
_ _ _ _ _ _ _ I I _ _ _ _ II -I ... I -- ->1 null

I II

PICTURE RECTANGLE LINE

2.5 4.8

I 5.0

PICTURE.COMPONENT.SHAPE - RECTANGLE -- reference

PICTURE.COMPONENT.HEIGHT :- 3.5; -- assignment

PICTURE.COMPONENT.DIAMETER -- illegal reference
L PICTURE.COMPONENT.SHAPE :m CIRCLE -- illegal assignment

I VI.470

SUMMARY

Access Types

Data Abstraction

Generics

Discriminants

Variant Records

[VI.480

EXAMPLE VII

Fundamentals of Tasking

1.110

OBJECTIVES

Task Concepts

L vi.110

JI

A Fault Warning Procedure

I.
procedure ANNOUNCE FAULT (FAULTCODE : INTEGER) is

task RING WARNING BELL;

task FLASH RED LIGHT;

task PRINTMESSAGE;

task body RING WARNING BELL is

end RING WARNING BELL;

task body FLASHREDLIGHT is

end FLASHREDLIGHT;

task body PRINT MESSAGE is

end PRINT MESSAGE;

begin -- body of procedure

-- wait for tasks to do their work
-- order of execution is unimportant

end ANNOUNCE FAULT;

Ii

i"

~VI.o120

I

[function SUM ARRAYS (A,B : FLOAT-ARRAY)
?'eturn FLOAT[

I. I I

I I

ISUM_Al ISUM BI

-7I I I - I

I I

I]I
I return
SUM OF A + SUM OF B II I

SUM OF A = A(A'FIRST) +...+ A(A'LAST)

SUM OF B = B(B'FIRST) +...+ B(B'LAST)

Tasks SUMA and SUM B can be processed in parallel.

They are independent processes.

Each involves simple sequential processes.

No inter-process communication and no sharing of data.

[VII.130

I...-W"--, -. '.~rfi

[function SUM ARRAYS (A, B : FLOAT ARRAY) return FLOAT is
-- This is an example of tasks which can run in parallel
-- because they do not interact.Ii SUM OF A, SUM OF B : FLOAT :- 0.0;i ~ ~beg in ..

declare -- a block to contain the tasks

task SUMA; -- simplest possible task declaration

task SUM B; -- another, to run in parallel

task body SUMA is -- corresponds to a package body
V. begin

for I in A'FIRST .. A'LAST loop
SUM OF A= SUM OF A + A(I);

end lop;-
end SUMA;

task body SUMB is
begin

for I in B'FIRST .. B'LAST loop
SUM OF B := SUM OF B + B(I);

end loop;-
end SUM_B;

begin -- body of block

null;

-- This block will not terminate until both tasks terminate
-- because they are declared in the block.

end;

return SUM OF A + SUM OF B;
end SUM ARRAYS;

-- This example can be generalized to involve any number of arrays1i -- and tasks, with one task being declared for each array.

L
L
[

IVII. 140

I

Ifunction SUM ARRAYS (AB • FLOAT-ARRAY)return FL15AT is

[SUMOFA, SUMOFB : FLOAT := 0.0;

beg in

1. declare

... -- task declarations

-- task bodies

[begin
-- empty body (of block)

end

1. return SUM OF A + SUM OF B;

end SUM-ARRAYS;

Elaboration of the task bodies causes their initiation.

Only when tasks declared within block terminate will the
block terminate.

L.

11YI I. 150

!

[Task Specification

t task (Ily] identifier

is entry - declaration \
entry - declaration

\ optional]ientry declaration I/I. I
Ii end identifier /

A single task can be declared by a task specification, as
has been done in this example,

or

A task type can be declared, allowing any number of
variablesof that type to be created.

1.. Task types allow the inclusion of tasks in any data struc-
ture and dynamic creation of tasks using access types which

p reference tasks.

iV-!.

F

iii
IVI I. 160

i

I Example of Task Types

task type RESOURCE is
entry SEIZE;
entry RELEASE;I. end RESOURCE;

SINGLE : RESOURCE;
POOL : array (l..10) of RESOURCE.

SINGLE. SEIZE
POOL (K) .RELEASE

I VII.170

EXAMPLE VIII

TASK INTERACTIONS

1.I.0

OBETIE

Enre

Eas Atribes

Select Statements

1.1. 1

I

[Example VIII
Version 1

Task Interactions

-- An example of cooperating tasks running in parallel.

BLOCK LENGTH : constant INTEGER := 100;
type ELOCK is array (1..BLOCK LENGTH) of INTEGER;

task PRODUCE BLOCK;
-- A task-which produces blocks of data items from any source.
-- Each block is BLOCK LENGTH data items long.

task CONSUME ITEM;
-- A task-which processes data one item at a time.
-- Structure of data blocks is unimportant to this task.

task BLOCK TO ITEM is

-- A task-to-allow PRODUCEBLOCK to feed CONSUME ITEM.

entry SENDBLOCK (B : in BLOCK);

-- A call to SEND BLOCK is accepted first.

entry GETITEM (ITEM : out INTEGER);

-- 100 (BLOCK LENGTH) calls to GETITEM are then accepted
-- before looping back to the accept for SEND BLOCK.

end BLOCK TO ITEM;

[
[VIII. 120

task body BLOCK TO ITEM is
BUFFER : BLOCK;-

begin
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;

end SEND BLOCK;
for I in-l..BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do
ITEM :=-BUFFER(I);

end GET ITEM;
end loop;

end loop;
end BLOCK TO ITEM;

task body PRODUCEBLOCK is
MY BLOCK : BLOCK;

beg in-
loop

-- fill MY BLOCK from somewhere

BLOCK.TOITEM. SENDBLOCK (MY-BLOCK);

end loop;

.- end PRODUCE BLOCK;

task body CONSUME ITEM is
NEXTITEM : INTEGER;

begin

* "loop

BLOCKTOITEM.GET ITEM (NEXT ITEM);

-- consume NEXT ITEM

end loop;

end CONSUME ITEM;

I i.
LVIII. 130

[task BLOCKTO ITEM is

-- task specification
-- contains entry declarations only

end BLOCKTOITEM;I.

task body BLOCK TO ITEM is

-- declarative part

beg in

-- sequence of statements

end BLOCKTO ITEM;

V1
L

IVIII.140

0

Itask body PRODUCEBLOCK is

-- fill MY BLOCK from somewhere

BLOCKTO ITEM.SEND_BLOCK(MYBLOCK); -- entry call

end PRODUCEBLOCK;

task body BLOCK TO ITEM is

accept SEND BLOCK(B : in BLOCK) do
BUFFER := B

end SENDBLOCK;

end BLOCK TO ITEM;

, -I .5

[

* I I fill MYBLOCK I
I I from somewhere I

I BLOCK TO ITEM. I
I I SEND BLOCK I I accept SENDBLOCK
I I(MY BLOCK) I I (B :in BLOCK)

RENDEZVOU

I ~ ~ ~ ~ ~ BFE := B__ _ _ _ _ _ _ _ _ _ _ _ _

execute

I I.16

!

.1 ENTRY DECLARATION
and

ENTRY CALL

ENTRY declaration

Similar to a procedure declaration in syntax

Can be declared only in a task specification

ENTRY call

Same syntax as subprogram calls

ill I

!

ACCEPT STATEMENT

accept entry name

formal part (optional)

do sequence of statements end (optional)

formalpart

analogous to subprogram formal part;
specifies parameters, their modes and types

do sequence of statements end

when rendezvous occurs (entry has been called and
accept statement is reached) sequence of statements
is executed

• .. VIII.180

task body BLOCK TO ITEM is
BUFFER : BLOCK;-

beg i
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER :=- B;

end SEND BLOCK;
for I in-..BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do
ITEM :=-BUFFER(I);

end GET ITEM;
end loop;

end loop;
end BLOCK TO ITEM;

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;

beg in-
loop

-- fill MY BLOCK from somewhere

BLOCK TO ITEM.SEND BLOCK (MY BLOCK);
end loop.

end PRODUCE-BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INTEGER;

begin -

loop
BLOCK TO ITEM.GET ITEM (NEXTITEM);
-- coinsuime NEXT ITEM

end loop;
end CONSUME ITEM;

VIII .190

i o,

task body BLOCK TO ITEM is
BUFFER : BLOCK;-

begin
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER :Z B;

end SEND BLOCK;
for I in-l..BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do
ITEM := BUFFER(I);

end GET ITEM;
end loop;

end loop;
end BLOCKTOITEM;

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;

beg in-
loop

-- fill MY-BLOCK from somewhere

BLOCK iO ITEM.SEND BLOCK (MY BLOCK);

end loop;V
end PRODUCE BLOCK;

--

task body CONSUME ITEM is
NEXT ITEM : INTEGER;

begin
loop

BLOCK TO ITEM.GET ITEM (NEXT ITEM);
-- consume NEXT ITEM

end loop;
end CONSUME ITEM;

VIII. 200

I

I task body BLOCK TO ITEM is
BUFFER : BLOCK;-

begin
jloop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER :- B;

i end SEND BLOCK;
for I in- l..BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do <<-n====
ITEM : =-BUFFER(I);

end GETITEM;
- end loop;

end loop;
end BLOCK TOITEM;

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;

begin-
loop

-- fill MY BLOCK from somewhere

BLOCK TO ITEM.SEND BLOCK (MYBLOCK);
end loop;

end PRODUCE BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INTEGER;

begin
loop

BLOCK TO ITEM.GET ITEM (NEXTITEM);
-- consume NEXTIYEM

end loop;
end CONSUME ITEM;

1.

I VIII.*210

task body BLOCK TO ITEM is
BUFFER : BLOCK;-

beg in
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER :Z B;

end SEND BLOCK;
for I in-l..BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do <<==-===
ITEM :--BUFFER(I);

end GET ITEM;
end loop;

end loop;
end BLOCK TOITEM;

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;

begin-
loop

-- fill MY BLOCK from somewhere

<<

BLOCK TO ITEM.SEND BLOCK (MYBLOCK);
end loop-

end PRODUCE BLOCK;

--

task body CONSUME ITEM is

NEXT ITEM : INTEGER;
begin -

loop
BLOCK TO ITEM.GET ITEM (NEXTITEM);
-- consume NEXTITEM

end loop;
end CONSUME ITEM;

11
[VIII *220

task body BLOCK TO ITEM is
BUFFER : BLOCK;

beg in
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;

2 end SEND BLOCK;
for I in-l..BLOCK LENGTH loop

accept GETITEM (ITEM : out INTEGER) do <<=======
ITEM :=- BUFFER(I);

end GET ITEM;
end loop;

end loop;
end BLOCKTOITEM;

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;

begin-
loop

-- fill MY BLOCK from somewhere

BLOCK TO ITEM.SEND BLOCK (MYBLOCK);
end loop.-

end PRODUCE BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INTEGER;

beg in
loop

BLOCK TO ITEM.GET ITEM (NEXTITEM);
-- consume NEXT ITEM

end loop;
end CONSUME ITEM;

1.'

I ~vI II. 230

[

task body BLOCK TO ITEM is
BUFFER : BLOZK;-

begin
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER := B;

end SEND BLOCK;
for I in -.. BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do
ITEM :-- BUFFER(I);

end GET ITEM;
end loop;

end loop;end BLOCKTOITEM;

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;

begin-

loop
-- fill MY BLOCK from somewhere

BLOCK TO ITEM.SEND BLOCK (MY BLOCK);
end loop,

end PRODUCEBLOCK;

--

task body CONSUME ITEM is
NEXT ITEM : INTEGER;

beg in
loop

BLOCK TO ITEM.GET ITEM (NEXTITEM);
-- consume NEXTITEM

<= ==

end loop;
end CONSUME ITEM;

I.

~VIII. 240

j VERSION 2 - STRUCTURE

V
-- An example of cooperating tasks running in parallel,
-- within a complete program

procedure MAIN;

task BLOCK TO ITEM is ... ;
task PRODUCE BLOCK;
task CONSUME-ITEM;

task body BLOCK TO ITEM is ...
task body PRODUCEBLOCK is .. ;
task body CONSUMEITEM is ...

begin -- body of MAIN

loop
delay 15.0 * SECONDS;

exit when PRODUCE BLOCK'TERMINATED
and CONSUMEITEM'TERMINATED;

end loop;

abort BLOCK TO ITEM;

end MAIN;

I

I.
Ii

VIII.250

....II 11111"" ii111...

I
Task Bodies

task body PRODUCEBLOCK is
MY BLOCK : BLOCK;
NO-MOREBLOCKS : BOOLEAN := FALSE;

beg in-
loop

-- fill MY BLOCK from somewhere

if NO MORE BLOCKS THEN
--- Call-SEND BLOCK with some indication of end
-- of data, 'or example a block of negative values.
exit;

end if;
BLOCKTOITEM.SEND BLOCK (MYBLOCK);

end loop;
end PRODUCE BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INTEGER;

beg in
loop

BLOCK TO ITEM.GET ITEM (NEXTITEM);
exit ;he3 NEXT ITEM < 0;
-- consume NEXF ITEM

end loop;
end CONSUME ITEM;

task body BLOCK TOITEM is
BUFFER : BLOCK;

beg in
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER :- B;

end SEND BLOCK;
for I in-l..BLOCK LENGTH loop

accept GET ITEM (ITEM out INTEGER) do
ITEM :=-BUFFER(I);

end GET ITEM;
end loop;

end loop;
end BLOCKTOITEM;

VIII.260

TASK AND ENTRY ATTRIBUTES

For a task T, the following attributes are defined:

T'TERMINATED of type BOOLEAN - initially equal to FALSE
when a task is created and becomes TRUE when
the task terminates

T'STACK SIZE inidicates the number of storage units
allocated for the task (an integer number)

T'PRIORITY of predefined type PRIORITY

Defined in package STANDARD:

subtype PRIORITY is INTEGER range implementation defined;

PRIORITY is set by the optional appearance of

pragma PRIORITY (staticexpression);

somewhere within a task specification.

If processor resources are shared, an eligible task
with the highest priority is executed.

The priority of a task is static.

For an entry E of Task T, the following attribute can be used
within the body of task T:

E'COUNT The number of entry calls presently queued
on the queue associated with entry E.
An integer number.

" VI I I.270

The DELAY Statement

Suspends the task which executes it for at least the given
time interval.

delay simple_ex pression;

SECONDS is a predefined constant defined in STANDARD package
(implementation defined). It gives the number of
basic time units in one second.

f Ii

L V II. 28 0

L The ABORT Statement

Example:

abort BLOCK TO ITEM;

Causes unconditional asynchronous termination of task(s).

If a task calling an entry is abnormally terminated, it is

removed from the entry queue; if the rendezvous is already

in progress, the calling task is terminated but the task

executing the accept statement is allowed to complete the

rendezvous normally.

If there are pending entry calls for the entries of a task

that is abnormally terminated, an exception TASKING-ERROR is

raised for each calling task at the point where it calls the

entry, including for a task presently engaged in a rendez-

vous, if any.

ABORT statements are almost never needed and should only be

used when no other feature can do a job.

VIII. 290

Example VIII
Version 2

-- An example of cooperating tasks running in parallel,
-- within a complete program.

procedure MAIN;

BLOCK LENGTH : constant INTEGER :- 100;
type BLOCK is array (1..BLOCK LENGTH) of INTEGER;

task PRODUCE BLOCK;
-- A task-which produces blocks of data items from any source.
-- Each block is BLOCK LENGTH data items long.

task CONSUME ITEM;
-- A task which processes data one item at a time.
-- Structure of data blocks is unimportant to this task.

task BLOCK TO ITEM is
-- A taik Eo allow PRODUCE BLOCK to feed CONSUME ITEM.
entry SEND BLOCK (B : in Bt:OCK);
entry GET ITEM (ITEM : out INTEGER);

end BLOCK TO-ITEM;

task body BLOCK TO ITEM is
BUFFER : BLOCK;-

begin
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER :Z B;

end SEND BLOCK;
for I in-l..BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do
ITEM :=-BUFFER(I);

end GET ITEM;
end loop;

end loop;
end BLOCK TO ITEM;

L
a-

I

I

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;
NO-MORE BLOCKS : BOOLEAN :- FALSE;

begin
loop

-- fill MY-BLOCK from somewhere

* -- NOMOREBLOCKS may be changed in here

if NO MORE BLOCKS THEN
--- Call-SEND BLOCK with some indication of end
-- of data, for example a block of negative values.
exit;

end if;
BLOCK TO ITEM.SEND BLOCK (MYBLOCK);

end loop;
end PRODUCE BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INfEGER;

begin
loop

BLOCK TO ITEM.GET ITEM (NEXTITEM);
exit when NEXT ITEM < 0;
-- consume NEXT ITEM

end loop;
end CONSUMEITEM;

begin -- body of main

-- There is nothing to be done in this body, but it
-- will not terminate until all three tasks terminate.
-- However, BLOCK TO ITEM loops forever.
-- A possible sol~tion is to wait for the other two:

loop
delay 15.0 * SECONDS;
exit when PRODUCE BLOCK'TERMINATED

and CONSUME ITEM'TERMINATED;
end loop;

abort BLOCK TO ITEM;

end MAIN;

IV1III.310

1.|

..i". . . I i~nldi . . . ":.In ln~ ~ ,l n ' ~

VERSION 3 - STRUCTURE

-- An example of cooperating tasks running in parallel,
-- within a complete program with improved termination.

procedure MAIN;

task BLOCK TO ITEM is ...

task body BLOCKTO ITEM is ...

begin -- body of MAIN

declare

task PRODUCE BLOCK;
task CONSUME-ITEM;

task body PRODUCE BLOCK is ...

task body CONSUME-ITEM is ...

begin -- body of block

null;

-- This block will terminate only after the two tasks
-- declared within it terminate. Each explicitly does
-- so, thus exit from this block is guaranteed and only
-- BLOCKTOITEM will still be active at that time.

end;

-- BLOCK TO ITEM must now be terminated to enable the
-- termiNatTon of this procedure.

abort BLOCKTOITEM;
end MAIN;

VII • 320

I

Example VIII
Version 3

-- An example of cooperating tasks running in parallel,
.. within a complete program with improved termination.

procedure MAIN;

BLOCK LENGTH : constant INTEGER :- 100;
type BLOCK is array (I..BLOCK LENGTH) of INTEGER;

task BLOCK TO ITEM is
-- A taik Eo allow PRODUCE BLOCK to feed CONSUME ITEM.
entry SEND BLOCK (B : in BLOCK);
entry GET ITEM (ITEM : out INTEGER);

end BLOCKTO-ITEM;

task body BLOCK TO ITEM is
BUFFER : BLOCK;

begin
loop -- forever

accept SEND BLOCK (B : in BLOCK) do
BUFFER : B;

end SEND BLOCK;
for I in-..BLOCK LENGTH loop

accept GET ITEM (ITEM : out INTEGER) do
ITEM :- BUFFER(I);

end GETITEM;
end loop;

end loop;
end BLOCKTOITEM;

begin -- body of MAIN

declare -- a block to declare the other two tasks

task PRODUCE BLOCK;
-- A task which produces blocks of data items from any
-- source. Each block is BLOCKLENGTH data items long.

task CONSUME ITEM;
-- A task which processes data one item at a time.
-- Structure of data blocks is unimportant to this task.

VIII. 330I _

I

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;
NO-MOREBLOCKS : BOOLEAN : FALSE;

begin
loop

-- fill MYBLOCK from somewhere

if NO MORE BLOCKS THEN
---Call-SEND BLOCK with some indication of end
-- of data, for example a block of negative values.
exit;

end if;
BLOCK TO ITEM.SENDBLOCK (MYBLOCK);

end loop; -
end PRODUCEBLOCK;

task body CONSUME ITEM is
NEXTITEM : INTEGER;

beg in
loop

BLOCK TO ITEM.GET ITEM (NEXTITEM);
exit wheF NEXT ITM < 0;
-- consume NEXTITEM I

end loop; ,
end CONSUMEITEM;

begin -- body of block

null;

-- This block will terminate only after the two tasks
-- declared within it terminate. Each explicitly does
-- so, thus exit from this block is guaranteed and only'
-- BLOCKTOITEM will still be active at that time.

end;

-- BLOCK TO ITEM must now be terminated to enable the
-- terminatTon of this procedure.

V abort BLOCK TO ITEM;

end MAIN;

1.
[VIII. 340

VERSION 4 - STRUCTURE

(same as VERSION 3)[
-- The previous example is now modified to allow
-- BLOCK TO ITEM to buffer several blocks if PRODUCE BLOCK
-- gets Taheid of CONSUME ITEM.

procedure MAIN;

BLOCK LENGTH - ...
type BLOCK is ...

task BLOCK TO ITEM is ...

task body BLOCK TO ITEM ...

begin -- body of MAIN

declare

task PRODUCE BLOCK;
task CONSUMEITEM;

task body PRODUCE BLOCK is ...
task body CONSUME-ITE is ...

begin -- body of block

end;

abort BLOCK TO ITEM;

end MAIN;

I.3

[VIII.*350

I Use of a Block Buffer

I BLOCK LENGTH : constant INTEGER := 100;
type 9LOCK is array (l..BLOCK LENGTH) of INTEGER;

BUFFER SIZE : constant INTEGER :- 10;

* BUFFER-: array (l..BUFFER SIZE) of BLOCK;

IN INDEX

I" I " ******/-****** I*** * ****** I I I I

S I I*****1"****1****I*****1 I I 1

I I I*****1"****1****I****1I I I

OUT-INDEX

BLOCK COUNT = 4

The filling (production) of blocks and the use (consumption)

of items can be carried out in parallel.

Several blocks may be buffered.

I.VIII. 360

I

SELECT STATEMENT

Selective Wait

select

alternative 1

or alternative_2

> zero or more times

or alternativen /

else
> optional

sequence of statements /

end select;

Each alternative is composed of

1. (optional) "guard": when condition =>

2. acceptstatement

3. (optional) sequenceof statements

I.

[VlII. 370

I

Selective Wait - Open Alternatives

select

accept entry namel;

or accept entry._name_2;

or accept entry_namen;

end select;

o Select one of the open alternatives (accept statements) if
a corresponding rendezvous is possible. An alternative
is "open" if there is no guard. Rendezvous is possible
when a corresponding entry call has been issued by
another task.

o When several alternative rendezvous arc possible and/or
several open alternatives start with Pn accept statement
for the same entry one of the alternatives will be
selected at random.

o If no alternative can be immediately selected, task waits
until alternative can be selected.

VIII. 380

91

Selective Wait Use of Guards

select

when guard_l =>
accept entryname 1;

or when guard 2->
accept entry._name_2;

or accept entry_name 3;

end select;

An alternative with. a guard is open if the corresponding

condition is true.

VI.

[VIII.,390

4

Body of BLOCKTOITEM

task body BLOCKTOITEM is

BUFFER SIZE : constant INTEGER := 10;
BUFFER : array (1..BUFFER SIZE) of BLOCK;
BLOCK COUNT : INTEGER range 0 .. BUFFERSIZE : 0;
IN INDEX, OUT INDEX : INTEGER range 1 .. BUFFER SIZE 1;
ITYMINDEX : YNTEGER range I .. BLOCK LENGTH :=-1;

begin
loop -- forever

select

when BLOCKCOUNT < BUFFER SIZE =>

accept SEND BLOCK (B : in BLOCK) do

BUFFER(IN INDEX) : B;

end SEND-BLOCK;

ININDEX := ININDEX mod BUFFERSIZE + 1;

BLOCKCOUNT := BLOCKCOUNT + 1;

or when BLOCKCOUNT > 0 =>

accept GET ITEM (ITEM : out INTEGER) do

ITEM BUFFER(OUTINDEX, ITEMINDEX);

end GET ITEM;

ITEM INDEX := ITEMINDEX mod BLOCKLENGTH + 1;

if ITEMINDEX = 1 then

-- a block has been consumed

OUTINDEX := OUTINDEX mod BUFFERSIZE + 1;

BLOCKCOUNT := BLOCK COUNT - 1;

end if;

end select;

end loop;
end BLOCK TO ITEM;

VIII.400

!
-7

Example VIII
Version 4

-- The previous example is now modified to allow
-- BLOCK TO ITEM to buffer several blocks if PRODUCE BLOCK
-- gets ahead of CONSUME ITEM.

procedure MAIN is

BLOCK LENGTH : constant INTEGER := 100;
type BLOCK is array (1..BLOCKLENGTH) of INTEGER;

task BLOCK TO ITEM is
-- A task To allow PRODUCE BLOCK to feed CONSUME ITEM.
entry SEND BLOCK (B in BIOCK);
entry GET ITEM (ITEM : out INTEGER);

end BLOCKTO-ITEM;

task body BLOCK TO ITEM is
BUFFER SIZE : constant INTEGER := 10;
BUFFER : array (1..BUFFER SIZE) of BLOCK;
BLOCK COUNT : INTEGER range 0 .. BUFFERSIZE := 0;
IN INDEX, OUT INDEX : INTEGER range 1 .. BUFFER SIZE 1;
ITEM INDEX : YNTEGER range 1 .. BLOCKLENGTH :=-l;

beg in
loop -- forever

select
when BLOCK COUNT < BUFFER SIZE =>

accept WEND BLOCK (B :-in BLOCK) do
BUFFER(IN INDEX) := B;

end SEND BLOCK;
IN INDEX := IN INDEX mod BUFFER SIZE + 1;
BLOCK COUNT :=-BLOCK COUNT + 1;

or when BLOCK COUNT > 0 =>
accept GET ITEM (ITEM : out INTEGER) do

ITEM := BUFFER(OUTINDEX, ITEMINDEX);
end GET ITEM;
ITEM INDEX := ITEM INDEX mod BLOCKLENGTH + 1;
if ITEM INDEX = 1 Then

-- a block has been consumed
OUT INDEX := OUT INDEX mod BUFFER SIZE + 1;
BLOCK COUNT := BLOCK COUNT - 1;

end if;
end select;

end loop;
end BLOCK TO ITEM;

VIII.420

I

begin -- body of MAIN

declare -- a block to declare the other two tasks

task PRODUCE BLOCK;
-- A task which produces blocks of data items from any
-- source. Each block is BLOCKLENGTH data items long.

task CONSUME ITEM;
-- A task which processes data one item at a time.
-- Structure of data blocks is unimportant to this task.

task body PRODUCE BLOCK is
MY BLOCK : BLOCK;
NOMORE BLOCKS : BOOLEAN FALSE;

begin-
loop

-- fill MYBLOCK from somewhere

if NO MORE BLOCKS THEN
---Call-SEND BLOCK with some indication of end
-- of data, for example a block of negative values.
exit;

end if;
BLOCK TO ITEM.SENDBLOCK (MYBLOCK);

end loop;

end PRODUCE BLOCK;

task body CONSUME ITEM is
NEXT ITEM : INTEGER;

beg in
loop

BLOCK TO ITEM.GET ITEM (NEXTITEM);
exit when NEXT ITEM < 0;
-- consume NEXT_ ITEM

end loop;

end CONSUMEITEM;

begin -- body of block

null;

-- This block will terminate only after the two tasks

-- declared within it terminate. Each explicitly does
-- so, thus exit from this block is guaranteed and only
-- BLOCKTOITEM will still be active at that time.

end;
-- BLOCK TO ITEM must now be terminated to enable the
-- termiiatTon of this procedure.
abort BLOCK TO ITEM;ITEM

end MAIN;

[VIII.420

I

I Selective Wait - Else Part

select

alternative 1;

or alternative 2;

or alternative n;

else

sequence of statements

end select;

o Alternative selected as before.

o If no alternative can be immediately selected, the else
part is executed.

I*'11

1. .

fi VI1I.430

j Selective Wait - SELECT ERROR

select

guard 1 =>
accept entry name 1;

or guard 2 a>
accept entry name 2;

or guard_3 =>
acce entry name 3;

end select;

If all alternatives are closed (all guards are FALSE) then
the exception SELECT ERROR is raised.

I. 4

Ii

jVI11.440

1 T Forms of Alternatives

when condition =>

accept entry name

do sequenceofstatements end

sequence of statements

when condition =>

delaystatement

sequence of statements

when condition =>

terminate

An open alternative starting with a delay statement will be
selected if no other alternative has been selected before
the specified time interval has elapsed.

A selective wait can contain at most one terminate alter-
native. An open terminate alternative will be selected only
if the end of the program unit containing the task has been
reached and all other tasks depending on that program unit
have either terminated or are waiting at a selective wait
with a terminate alternative.

An alternative starting with a delay statement, a terminate
alternative and an else part are mutually exclusive.

1.!I"

I

"I.. . VlIII..i'1]. .. .;...L.. l l I . . _ It 4 5 0 .. . J

II select

when guard I =

[r entry_name_1;

when guard_2 ->
entry_,name_2;

rwhen guard-3 ->I
3!elay expression-i Both could

or / be open
delay expression-2;

end select;

only the one
with the
shortest time
interval is
selected.

[1 1.6

I BLOCK TO ITEM with Terminate Alternative

task body BLOCK TO ITEM is
BUFFER SIZE : constant INTEGER := 10;
BUFFER-: array (1..BUFFER SIZE) of BLOCK;
BLOCK COUNT : INTEGER range 0 .. BUFFER SIZE :- 0;
IN INDEX, OUT INDEX : INTEGER range 1 ..7 BUFFER SIZE :- 1;
ITEM INDEX : INTEGER range I .. BLOCK LENGTH :=-l;

begin -

loop -- forever

select
when BLOCK COUNT < BUFFER SIZE =>

accept SEND BLOCK (B :-in BLOCK) do
BUFFER(IN INDEX) :- B;

end SEND BLOCK;
IN INDEX:= IN INDEX mod BUFFERSIZE + 1;
BLOCK COUNT := BLOCK COUNT + 1;

or when BLOCK COUNT > 0 =>
accept GETITEM (ITEM : out INTEGER) do

ITEM := BUFFER(OUT INDEX, ITEMINDEX);
end GET ITEM;
ITEM INDEX := ITEM INDEX mod BLOCK LENGTH + 1;
if ITEM INDEX - 1 Ehen

-- a-block has been consumed
OUT INDEX := OUT INDEX mod BUFFER SIZE + 1;
BLOCK COUNT := B'EOCKCOUNT - 1;

end if;

or terminate; -- allows termination at end of block

end select;

end loop;
end BLOCK TO ITEM;

I.1.

[VIIIo470

I

VERSION 5 - STRUCTURE

LWith use of the version of BLOCK TO ITEM just presented, we
can restructure our example as fot'lo;s, completely eliminat-

Ii ing the use of abort.

procedure MAIN;

I. task BLOCK TO ITEM is ...
task PRODUCE NLOCK;
task CONSUME7ITEM;

task body BLOCK TO ITEM is ...
task body PRODUCE BLOCK is ...} task body CONSUME-ITEM is..

begin -- body of MAIN

null;

-- await termination of tasks

end MAIN;

I..
i.
I.

I VIII. 480

I,
SELECT STATEMENT

Conditional Entry Calls

select

entry call

sequenceofstatements -- optional

else

sequence of statements

end select;

A conditional entry call issues an entry call if and only if
this entry can be accepted immediately.

T"

1.
il
U

[

ViI|.190

I SELECT STATEMENT

Timed Entry Calls

- select

entry call

I sequenceof statements -- optional

or

delaystatement

- sequence _of statements -- optional

end select;

A timed entry call issues an entry call if and only if this
entry can be accepted within a given delay.

I :Ii

[VIII.500,

j EXCEPTIONS IN TASKS

I. If an exception is raised in the sequence of statements of a
task body that does not contain a handler for the exception,
the execution of the task is abandoned; that is, the task is
terminated. The exception is not propogated further.

Each task has an attribute named FAILURE which is an excep-
tion. Any task can raise the FAILURE exception in any task
which it can name (for example T) by the statement

raise T'FAILURE;

The exception FAILURE supersedes any other exception that is
not yet handled or that is received while handling FAILURE.
Within the body of a task type T (and only there) there may
be handlers for the exception T'FAILURE.

Ii5
Ii

LI VIII.510b

SUMMARY

Task Concepts

En tries

Accept Statements

Rende zvous

Task Attributes

Select Statements

[* I520

I
I
I.

I

1.

Ii
I

[i

I CASE STUDY I

Program Design Using Packages

I

I
I

L

[us -Ummcs.0

* *.-

I

I A TEXT FORMATTER

JDefault Operation

By default, output lines are filled and right justified

(by inserting extra spaces between words).

Line spacing is 1.

Right margin is set at column 60.

Page length is set at 66 with a four line margin

at the top and bottom of the page.

Leading spaces on a line cause a temporary indentation.

A blank line causes a break before it is transmitted to

the output. (A break terminates the current output

line in fill mode.)

14

£CSI.1lOi J

ICOMMAND SUMMARY

command break? default function

.bp yes begin page

.br yes cause a break

.ce n yes n=l center next n lines

.fi yes start filling

.in n no n=O indent n spaces

.ls n no n=l line spacing is n

.nf yes stop filling

.pl n no n=66 set page length to n

.rm n no n=60 set right margin to n

.sp n yes n=l space down n lines

.ti n yes n=O temporary indent of n

A '.1 in column i is an indication of a command line.

Signs are)ptional on command parameters; the presence of a

sign indicates a that the new value is relative to the old.

IC
I.

CS. 2

I.. .

I

I Main Program Design

procedure FORMAT

.begin

Initialize

while more input is available loop

*Get next line

if line is a command then

Process command

else

Process text

end if

end loop

Terminate

end FORMAT

I CSI. 130

[Command Processing Design

Iprocedure COMMANDIi. . .

begin

get parameter values (if any)

case command type is

when bp => break

space to end of page

when br => break

when ce => break

record number of lines to center

when fi => break

enter fill mode

when in => set indent value

when Is => set line space

when nf => break

enter no fill mode

when pl => set page length

when rm

when sp => break

space down n lines

when ti => break

set temp indent value

end case

end COMMAND

CSI.140

r jI
I Text Processing Design

i. procedure TEXT

begin te

handle leading blanks

• if line to be centered then

align text

put out line

elsif line is blank then

put out line

elsif not in fill mode then

put out line

else -- handle word-by-word

loop

get a word

exit when no more words

put out word

end loop

end if

end TEXT

I

L [CSI. 150

......................- ----- -- -

Collect subprograms which handle input and manipulate the input

buffer into a package, with the buffer hidden within the body.

package INPUTHANDLER is

type COMMANDS is (BP,BR,CE,FI,IND,LS,NF,PL,
RM, SP, TI, UNKNOWN)

type SIGN TYPE is (PLUS, MINUS, NONE, NOPARAM);
MAX WORD SIZE : constant INTEGER := 20;
subtype WORDSTRING is STRING (I .. MAXWORD SIZE);

function READ LINE return BOOLEAN;
-- Reads a line into an internal buffer; returns
-- FALSE when no more lines are available

-- Command-related functions

function IS COMMAND return BOOLEAN;
-- TRUE If line starts with a ..

function COMMAND TYPE return COMMANDS
procedure GET VAtUE (SIGN : out SIGN TYPE;

VALUE : out INTEGER);
-- Reads parameters to commands, when present.

-- Text processing functions
procedure PROCESS BLANKS;

-- Handles leering blanks
procedure CENTER;
function BLANK LINE return BOOLEAN;
procedure NEXT-WORD (WORD : out WORD STRING;

- LENGTH : out INTEGER);
function LINE return STRING;

-- used to send a whole line to FORMATTER
-- after centering and leading blank removal.

end INPUT HANDLER;

I.,

[CSI. 160

Collect subprograms which affect output into a single package.

Output buffer and some status variables will be protected within

I the body of this package.

j package FORMATTER is

procedure BREAK;

L procedure SPACE (N : NATURAL);

-- Space down N lines or to end of page.

procedure PUTLINE (LINE : STRING);

-- Used in no-fill mode

procedure PUTWORD (WORD : STRING);

-- Used in fill mode

end FORMATTER;

1 .

Ii
1

Ii

CSI. 170

I
!

Use a package to hold values used in several places

I (like a COMMON block).

i

I package VALUES is

FILL : BOOLEAN : TRUE;

. subtype VALUE RANGE is

INTEGER range 0 .. INTEGER'LAST;

LINESPACING : VALUERANGE := 1;

INDENTVALUE, TEMP INDENT, CENTER COUNT

VALUE RANGE :- 0;

RIGHTMARGIN : VALUERANGE 60;

PAGELENGTH : VALUE RANGE 66;

* end VALUES;

1.

i.

I.

[
[

[CSI. 180

1 li i H i ... I l l l l @ ...

I!

J Implementation of FORMAT

I with INPUT HANDLER, VALUES, FORMATTER;

use INPUTHANDLER, FORMATTER;

procedure FORMAT is

-- main program

procedure COMMAND is

I -- on following slide

procedure TEXT is

-- after COMMAND

begin

-- Initialization done in declarations

while READLINE() loop

if ISCOMMANDO then

COMMAND;

else

TEXT;

end if;

end loop;

1. -- Termination

[BREAK;
SPACE(VALUES.PAGE LENGTH); -- skip to end of page

[end FORMAT;

CSI.190

1I

JWithin the procedure COMMAND, we will be changing some of the

variables in VALUES. The nature of these changes will depend on

the presence or absence of a sign on the parameter. Also,

* parameters themselves are optional. The following procedure will

*' be used to uniformly handle the defaults and signs and with some

appropriate checking.

procedure SET (VAR : in out VALUE-RANGE; -- one of the variables

VAL : VALUE RANGE; -- from the command line

SIGN : SIGN TYPE; -- from the command line

DEFAULT : VALUE RANGE := 0;

MIN : VALUERANGE :-= 0; -- used for checking

MAX : VALUE RANGE := INTEGER'LAST) is

begin

case SIGN is

when NOPARAM => VAR := DEFAULT;

when PLUS => VAR := VAR + VAL;

when MINUS -> VAR := VAR - VAL;

when NONE => VAR := VAL;

end case;

-- Check for illegal values

if VAR > MAX then

VAR :- MAX;

elsif VAR < MIN then

VAR := MIN;

1. end if;

end SET;

[CSI • 200

II

Implementation of COMMAND

(within FORMAT)

with INPUT HANDLER, VALUES, FORMATTER;
use INPUT HANDLER, FORMATTER;
procedure-FORMAT is

procedure COMMAND is
subtype VALUE RANGE is VALUES.VALUE RANGE;
SIGN : SIGN TYPE;
VAL : VALUE RANGE;
SPACE COUNT-: INTEGER := 0;
procedure SET

end SET;
begin -- body of COMMAND

GET VALUE (SIGN, VAL);
casi COMMAND TYPE() is

when BP => BREAK;
SPACE (VALUES.PAGE LENGTH);

when BR => BREAK;
when CE => BREAK;

SET (VALUES.CENTER COUNT, VAL, SIGN, 1);
-- note use of detaults

when FI => BREAK;
VALUES.FILL := TRUE;

when IND=> SET (VALUES.INDENT VALUE, VAL, SIGN);
VALUES.TEMP INDENT-:= VALUES.INDENT VALUE;

when LS => SET (VALUES.LINE SPACING, VAL, SIGN, 1, 1);
when NF => VALUES.FILL := FXLSE;
when PL => SET (VALUES.PAGE LENGTH, VAL, SIGN, 66, 1);
when RM => SET (VALUES.RIGHTMARGIN, VAL, SIGN, 60, 1);
when SP => BREAK;

-- use SET to handle the sign and default
SET (SPACE COUNT, VAL, SIGN, 1);
SPACE (SPAfE COUNT);

when TI => BREAK;
SET (VALUES.TEMP INDENT, VAL, SIGN);

when UNKNOWN => null; -- ignore
end case;

end COMMAND;

end FORMAT;

CSI.210

I
J -Implementation of TEXT

(within FORMAT)

with INPUT HANDLER, VALUES, FORMATTER;

use INPUTHANDLER, FORMATTER;

procedure FORMAT is

procedure TEXT is

WORD : WORD STRING;

LENGTH : INTEGER;

begin

PROCESS BLANKS;

if VALUES.CENTERCOUNT > 0 then

CENTER;

PUTLINE (LINE));

VALUES.CENTER COUNT := VALUES.CENTER COUNT - 1;

elsif BLANKLINE() or not VALUES.FILL then

PUTLINE(LINE());

else -- handle one word at a time

loop

NEXTWORD (WORD, LENGTH);

exit when LENGTH = 0;

PUTWORD (WORD(l. .LENGTH));

end loop;

end if;

L end TEXT;

end FORMAT;

CSI.220

IOutline of INPUTHANDLER

package body INPUTHANDLER is

MAX LINE LENGTH : constant INTEGER := 150;
BUFFER STRING (l..MAX LINE LENGTH);

-- holds current input liie
LENGTH, CURRENT : range 0..MAX LINE LENGTH;

-- LENGTH is length of current input line
-- CURRENT points into BUFFER when it is being
-- used word-by-word in fill mode.

function READ LINE return BOOLEAN is

end READLINE;

function IS COMMAND return BOOLEAN is

end IS COMMAND;

function COMMAND TYPE return COMMANDS is

end COMMANDTYPE;

procedure GETVALUE (SIGN : out SIGN TYPE;
VALUE out INTEGER) is

end GETVALUE;

procedure PROCESSBLANKS is

end PROCESSBLANKS;

procedure CENTER is

end CENTER;

function BLANKLINE return BOOLEAN is

end BLANKLINE;

procedure NEXT WORD (WORD : out WORD STRING;
LENGTH : out INTEGER) is

end NEXTWORD;

function LINE return STRING is

end LINE;

end INPUT HANDLER;

LCSI*230

!

Design of GETVALUE

I' procedure GET VALUE (SIGN cut SIGNTYPE;

VALUE : out INTEGER) is

* begin

skip over command

skip intervening blanks

set SIGN

do conversion on characters to get VALUE

end

Ii
[CSIl. 240

Implementation of GETVALUE

(within INPUT-HANDLER)

package body INPUT HANDLER is

MAX LINE LENGTH : constant INTEGER := 150;
BUFFER :-STRING (l..MAX LINE LENGTH);

-- holds current input liiie
LENGTH, CURRENT : range 0..MAX LINE LENGTH;

-- LENGTH is length of currint input line
-- CURRENT points into BUFFER when it is being
-- used word-by-word in fill mode.

procedure GETVALUE (SIGN : out SIGN TYPE;
VALUE : out INTEGER) is

COL : range 1..MAXLINE LENGTH;

function CONVERT (INDEX : INTEGER) return INTEGER is
-- converts a string of digits starting at INDEX in
-- BUFFER to an integer.

begin
-- Use the same technique as in RECORD HANDLER.

end CONVERT;

begin
-- skip over command, three characters long
-- (could be generalized to handle arbitrary length
-- by looking for a special command syntax)
COL := 4;

SKIP BLANKS(COL); -- skips blanks and tabs

if COL > LENGTH then
-- nothing left on line
SIGN NO PARAM;
VALUE 0; -- should never be used, in this case

else
case BUFFER(COL) is

when s+ => SIGN PLUS;
COL := COL + 1;

when '-' => SIGN MINUS;
COL := COL + 1;

others => SIGN NONE;
end case;
VALUE := CONVERT (COL);

-- CONVERT will convert a string of digits
-- starting at position COL to an INTEGER

end if;
end GET VALUE;

end INPUT HANDLER;

' .. .- I .CSI. 250

Implementation of INPUT-HANDLER

with VALUES, TEXT 10, FORMATTER;
use VALUES, TEXT TO, FORMATTER; -- FORMATTER needed for call to BREAK
package body INPUTHANDLER is

MAX LINE LENGTH : constant INTEGER := 150;
BUFFER :-STRING (l..MAX LINE LENGTH);
LENGTH, CURRENT : range"0..MAX LINE LENGTH;

function READLINE return BOOLEAN is
beg in

if END OF FILE(STANDARDINPUT) then
return FALSE;

else
LENGTH :- 0;
while not END OF LINE loop

LENGTH := LENGTH + 1;
GET(BUFFER(LENGTH));

end loop;
CURRENT := 1; -- used by NEXT WORD
return TRUE;

end if;
end READLINE;

function IS COMMAND return BOOLEAN is
begin

return BUFFER(l) '
end ISCOMMAND;

function COMMAND TYPE return COMMANDS is
FIRST : CHARXCTER : BUFFER(2);
SECOND : CHARACTER := BUFFER(3);
C : COMMANDS;

begin
C : UNKNOWN;
case FIRST is

when 'b' => if SECOND = 'p' then C := BP;
elsif SECOND = 'r' then C := BR; end if;

when c' => if SECOND = 'e' then C := CE; end if;
when If' => if SECOND = 'i' then C : FI; end if;
when 'i' => if SECOND I n' then C := IND; end if;
when 'I => if SECOND Is' then C LS; end if;
when In' => if SECOND = f' then C := NF; end if;
when p' => if SECOND = '' then C = PL; end if;
when p' => if SECOND =i' then C =P; end if;
when Ir' => if SECOND = 'I' then C : RM; end if;
when Is' => if SECOND = 'p' then C := SP; end if;

[when others =>null;
end case;
return C;

end COMMANDTYPE;

I CSI. 260

Implementation of INPUT HANDLER
(Continued)

procedure SKIP BLANKS (I : in out INTEGER) is
-- Advances I-until BUF'FER(I) is not a blank or tab.

end SKIP BLANKS;

procedure GETVALUE (SIGN : out SIGN TYPE;

VALUE : out INTEGER) is
COL : range l..MAXLINELENGTH;

function CONVERT (INDEX : INTEGER) return INTEGER is
.. converts a string of digits starting at INDEX in
-- BUFFER to an integer.

begin
-- Use the same technique as in RECORD HANDLER.
-- Return 0 if no digits encountered.

end CONVERT;

beg in
-- skip over command, three characters long
-- (could be generalized to handle arbitrary length
-- by looking for a special command syntax)
COL := 4;

SKIP BLANKS(COL); -- skips blanks and tabs

if COL > LENGTH then
-- nothing left on line
SIGN : NO PARAM;
VALUE : 0; -- should never be used, in this case

else
case BUFFER(COL) is

when '+' => SIGN :- PLUS;
COL := COL + 1;

when -_ => SIGN : MINUS;
COL : COL + 1;

others => SIGN := NONE;
end case;
VALUE := CONVERT (COL);

-- CONVERT will convert a string of digits
-- starting at position COL to an INTEGER

end if;
end GET VALUE;

CSI.270

I

Implementation of INPUT HANDLER
(Continued)

[procedure PROCESS BLANKS is
-- Remove leadinj blanks, incrementing temporary indent
-- counter appropriately.

NUM BLANKS : range O..MAX LINE LENGTH;
begin -- -

if BUFFER(l) /= ' then
return; -- This procedure is not relevant.

end if;
BREAK; -- .ti causes a break
-- Find first non-blank;
NUM BLANKS := 1;
while NUM BLANKS < LENGTH

and then BUFFER(NUM BLANKS+l) = loop
NUN BLANKS := NUN BLANES + 1;

end loop;
.* -- Process result

if NUM BLANKS = LENGTH then
LENGTH :- 0; -- indication of a blank line

else
TEMP INDENT :- NUM BLANKS + INDENT-VALUE;
BUFFER(i..LENGTH-NUM BLANKS)

:= BUFFER(NUM BLANKS+I..LENGTH);
LENGTH := LENGTH - NUMBLANKS;

end if;
end PROCESS BLANKS;

procedure CENTER is
-- Centering is accomplished by manipulation of TEMP INDENT.
NEW-VALUE INTEGER;

begin
NEW VALUE := (RIGHT MARGIN + TEMP INDENT - LENGTH) / 2;
if NEW VALUE > 0 THXN

TEMP INDENT := NEWVALUE;
end If;-

end CENTER;

function BLANK LINE return BOOLEAN is
begin

return LENGTH = 0;
end BLANKLINE;

.. function LINE return STRING is
begin

return BUFFER(l..LENGTH);
end LINE;

[CSI.280

I

I Implementation of INPUTHANDLER
(Continued)

I procedure NEXTWORD (WORD : out WORD STRING;
LENGTH : out INTEGER) is

-- Uses the variable CURRENT. LENGTH will tell how many
-- characters in WORD are significant. Any string of
-- non-blank characters is a 'word'.

end NEXTWORD;

end INPUT HANDLER;

I"

i

[CSI. 290

I

I Outline of FORMATTER

package body FORMATTER is1.
MAX LINE LENGTH : constant INTEGER := 132;
MARGIN : constant INTEGER :- 4;
BUFFER : STRING (1..MAX LINE LENGTH);

-- Current output life
OUT PTR, OUT WORDS, LINE NUM : VALUE RANGE :m 0;

-- OUT PTR points to Tast charactgr in BUFFER
-- OUT-WORDS is the number of words on this line
-- LINT NUM is the current line number

1. procedure BREAK is

end BREAK;

procedure SPACE (N : NATURAL) is

end SPACE;

procedure PUTLINE (LINE : STRING) is

end PUTLINE;

procedure PUTWORD (WORD : STRING) is

end PUTWORD;

end FORMATTER;

I.

I.
I
Ii

[CSI. 300

I

J Implementation of FORMATTER

with VALUES, TEXT 10;
use VALUES, TEXT O;
package body FOR14ATTER is

MAX LINE LENGTH : constant INTEGER := 132;
BUFFER :STRING (l..MAX LINE LENGTH);

- OUT PTR, OUT WORDS, LINE NUM: VALUE RANGE := 0;
MARGIN : congtant INTEGER : 4; -

BLANK : constant CHARACTER : '
BOTTOM : constant INTEGER :- PAGE LENGTH - MARGIN;

function MIN (I, J • INTEGER) return INTEGER is
beg in

if I < J then
return I;

else
return J;

end if;
end MIN;

procedure PUTLINE (LINE : STRING) is
-- Send LINE to the output file

BLANKS : constant STRING := (l..MAX LINE LENGTH => BLANK);
beg i n

if LINE NUM - 0 or LINE NUM > BOTTOM then
-- start a new page
NEW LINE (MARGIN); -- puts out blank lines
LINE NUM := MARGIN + 1;

end if;
-- put out leading blanks
PUT (BLANKS(I..TEMP INDENT));
TEMP INDENT :- INDENT VALUE;
-- write out the string LINE
PUT (LINE);
-- handle line spacing
NEW LINE (MIN (LINE SPACING, BOTTOM-LINE NUM+I));
LINE NUM := LINE NUM + LINESPACING;
-- cFeck for end-of page
if LINE NUM > BOTTOM then

NEW rINE (MARGIN);
-- TINE NUM is purposely not changed here' end if;

end PUTLINE;

Ii

[CSI. 310

Implementation of FORMATTER

(Continued)

Iprocedure SPACE (N • NATURAL) is
-- skip N lines or to bottom of page

begin
if LINE NUM > BOTTOM then

-- spacing has no effect in this case
return;

end if;
if LINE NUM = 0 then

NEW LINE (MARGIN):
LINT NUM := MARGIN + 1;

end if;-
NEW LINE (MIN (N, BOTTOM-LINE NUM+I));

- LINE NUM :- LINE NUM + N;
-- c~eck for end-of page
if LINE NUM > BOTTOM then

NEW LINE (MARGIN);
end if7

end SPACE;

procedure BREAK is
-- end current filled line

beg i n
if OUT PTR > 0 then

PUTtINE(BUFFER(I..OUTPTR));
OUT PTR :- 0;
OUT WORDS :- 0;

end if,
end BREAK;

procedure PUTWORD (WORD : STRING) is

end PUTWORD;

end FORMATTER;

CSI. 320

I

I Design of PUTWORD

procedure PUTWORD

I

[
1Compute current line length + word length

if new length > allowed line length then

-- Addition of blanks necessary to right-justify

Spread out words in buffer to fill line

Break -- to flush out the line

end if

Copy word to output buffer

Adjust state variables

end PUTWORD;

i -

I.
I.

Ii

[
[
[CSi.330

I

I Design of SPREAD

I procedure SPREAD

-- the number of blanks to add will be passed as a parameter

[

begin

-- Switch direction flag

-- add blanks from opposite ends on alternate lines

Compute number of holes -- spaces between words
I.

loop from end to beginning of words in buffer

copy a character to next available slot

if character is a blank then

insert appropriate number of extra blanks

-- based on number of holes

end if

end loop

end SPREAD

iiI;
U

£ S.4

I'
3 Implementation of PUTWORD

(wi thin FORMATTER)

package body FORMATTER is

MAXLINE.LENGTH : constant INTEGER :- 132;
MARGIN : constant INTEGER := 4;
BUFFER : STRING (l..MAX LINF LENGTH);

-- Current output li~e -
OUT PTR, OUT WORDS, LINE NUM : VALUE RANGE :- 0;

-- OUT PTR points to last charactir in BUFFER
-- OUT WORDS is the number of words on this line
-- LINE NUM is the current line number

procedure PUTWORD (WORD : STRING) is
: LAST, LINE-SIZE : VALUE-RANGE;
!. ~beg in---

LINE SIZE :- RIGHT MARGIN - TEMP INDENT;
if OUT PTR + WORD'EENGTH > LINE 9IZE then

-- Xddition of blanks necessiry to right-justify
SPREAD (LINE SIZE - OUT PTR + 1);

-- "+ 1" Because BUFfER(OUTPTR) is a blank
if OUT WORDS > 1 then

OUTPTR :- LINE SIZE; -- the effect of SPREAD
end if;
BREAK;

end if;
-- Copy WORD and a blank to output buffer
LAST := OUT PTR + WORD'LENGTH + 1;
BUFFER(OUT ITR+1..LAST) := WORD & BLANK;
-- Adjust itate variables
OUT PTR :- LAST;
OUT-WORDS :z OUT WORDS + 1;

end PUTWORD;

end FORMATTER;

1.

[
[CSI .350

I

Implememtation of SPREAD

(within PUTWORD)

package body FORMATTER is
MAX LINE LENGTH : constant INTEGER :- 132;

MARGIN :-constant INTEGER := 4;
BUFFER : STRING (l..MAX LINELENGTH);

-- Current output li~e
OUT PTR, OUT WORDS, LINE NUM : VALUE RANGE : 0;

-- OUT PTA points to last character in BUFFER
-- OUT-WORDS is the number of words on this line
-- LINE NUM is the current line number

ADD FROM RIGHT : BOOLEAN := TRUE;
-- muit be at the package body level; used by SPREAD to
-- insert blanks at opposite ends of alternate lines

procedure PUTWORD (WORD : STRING) is

p;;cedure SPREAD (NUM BLANKS : VALUE RANGE) is
I, J, NUM HOLES, ADD COUNT : VALUE RANGE;
NUMEXTRA-: VALUE RANGE :- NUM BLANKS;

beg in
if OUT WORDS <= 1 then

return; -- nowhere to put blanks
end if;
ADD FROM RIGHT := not ADD FROM RIGHT;

-- add-blanks from oppogite ends on alternate lines
NUM HOLES := OUT WORDS - 1;
I : OUT PTR - 1 -- points to last non-blank char
J : I +-NUM EXTRA;
while I < J Toop

BUFFER(J) := BUFFER(I);
if BUFFER(J) = BLANK then

if ADD FROM RIGHT then
ADD-COUNT (NUM EXTRA - 1) / NUM HOLES + 1;j else
ADD COUNT := NUMEXTRA / NUM HOLES;

end if.-
NUM EXTRA : NUM EXTRA - ADD COUNT;
NUM HOLES := NUM HOLES - I;-
for-K in l..ADD _OUNT loop

J := J - 1;
BUFFER(J) :- BLANK;

end loop;
end if;

end loop;
end SPREAD;

end PUTWORD;L
end FORMATTER;

[_- CSI. 360

I. CASE STUDY 11

1. TELEPHONE SWITCHING SIMULATION

I.I.0

System Block Diagram

I I LINE
I I HANDLERS

IA C I_ __T__ I . to telephones

ILSI
SI

I RI

I I-

I I.11

I

Network Operation

1 Each line handler monitors its associated telephone lines for
such events as digits being transmitted and the receiver being
lifted from or returned to the hook. When these events occur,I the line handler notifies the call processor. Upon command from
the call processor, it also controls ringing. The line hanldlers
are used (rather than a single central processor) in order to
distribute the real-time demands of line monitoring.

The call processor is driven by messages from the line handlers
concerning line events. It translates phone numbers to physical
line addresses and controls the connection and disconnection of
circuits.

This simulation will only be concerned with the transmission of
control signals among the various components of the network and
the interpretaion of these signals. Data could be collected to
determine the adequacy of the components and the architecture of
the network to handle various traffic loads.

[
I
I CSII.120

!II•

Program Task Structure

The following tasks will exist throughout the execution of the

simulatiion:

J - The CALL PROCESSOR will be represented by a task.

- Each LINE HANDLER will be represented by an idintical task.

- Each telephone will be represented by a PHONE task.

- Calls will be generated by a DRIVER task.

Each call will be represented by a dynamically allocated CALL
task, which will communicate with the PHONE tasks involved. Such
tasks will terminate when the calls they represent are completed.

The control signals flowing through the network will be
represented by messages passed among these tasks.

ICI.

[
[I

MESSAGE

I A single message type will be useful, so that all message handl-
ing can be done uniformly. We will use the following
declarations to define such a message type.

type MSG TYPE is (NOISE, DIGIT, HOOK, STATUS, DETAIL);

type STATUS TYPE is (RINGING, BUSY, DIALTONE, CONNECTED,
DISCONNECTED, COMPLETED, NOANSWER, PHONEFREE, NOTFREE);

type MESSAGE (KIND : MSG TYPE) is
record

SENDER : INTEGER; -- to identify source
LINE NUM : INTEGER; -- sometimes needed
case--KIND is

when NOISE => RING BOOLEAN;
-- start phone ringing if TRUE

I. -- stop if FALSE
when DIGIT => DIGIT : INTEGER;

* when HOOK => HOOK STATE : (ON, OFF);
when STATUS => STXTE : STATUS TYPE;
when DETAIL => LENGTH INTEGER; -- length of call

FROM : INTEGER; -- calling line number
TO : INTEGER; -- number being called
HANGUP INTEGER; -- which one hangs up

end case;
end MESSAGE;

I.

IICSII. 140

[Communication between Tasks

11We want to send messages between tasks asynchronously so that,
for example, a LINE HANDLER need not wait until the CALL PROCES-
SOR has actually processed one of its messages before it can
receive a message from a PHONE. We will thus need tasks to han-
dle the mechanics of message buffering. Each task will have a
corresponding message buffer task to handle its incoming com-
munication.

1i task type MESSAGE BUFFER is
entry SEND (M : in MESSAGE);

-- called by other tasks to send a message to the
-- corresponding task

entry RECEIVE (M : out MESSAGE);
-- called by the corresponding task to accept messages

end MESSAGEBUFFER;

I Since MESSAGE is a globally declared record type with variants to
represent all of the different kinds of messages which might be

- used by any of the tasks, we need only write one message buffer-
ing task.

Ii[

I
[csI i. 150

Simulation Primitives

II To "implement a simulation capability, we need routines to
maintain an event list, to keep track of a simulation time and to
allow tasks to be scheduled for execution. In this particular11 problem, the only scheduling primitive needed by the tasks
representing the various system components is hold, which allows
a given task to suspend its execution for a -F~ied amount of
simulation time.

The simulation routines will be implemented as a package. Any
7 tasks wishing to use hold must have previously been assigned a

task identifier by te simulation package. A procedure will be
available in the package for this package.

~' package SIMULATION is
type TASK ID is private;
procedure GET ID (ID : out TASK ID);

-used to ask for a task idintifier
procedure RETURN ID (ID : in TASK ID);

* -- used by dynamic process when they terminate
procedure HOLD (ID : in TASK ID; TIME : in INTEGER);

-TIME is milliseconds oT simulation time
procedure RECEIVEMESSAGE (BUFFER : in MESSAGEBUFFER;

M : out MESSAGE);
-called by a task when it wants to remove a
-message from its buffer

private
type TASK ID is new INTEGER;

end SIMULATI'5N;

The RECEIVE MESSAGE procedure is necessary in order to allow thej
simulation package to know about those tasks which are suspended

waiting for message, as well as those suspended by calls to hold.

I CSi I *160

I Main Program Structure

Iprocedure SWITCH (NUM -LINES :INTEGER; -- not greater than 8999

isRUN-LENGTH :INTEGER) -- simulation time

-message declarations (as on earlier slide) go here

task type MESSAGE-BUFFER is
entry SEND (M *: in MESSAGE);
entry RECEIVE (M : out MESSAGE);

end MESSAGE-BUFFER;

package SIMULATION is

* -as on previous slide

end SIMULATION

V task CALLPROCESSOR;

task type LINE HANDLER is
entry STARTUP (INDEX : INTEGER);

end LINE-HANDLER;

task type PHONE is
entry STARTUP (INDEX : INTEGER);

end PHONE;

task type CALL; -- these are allocated dynamically

task DRIVER; -- generates calls

CSI I. 170

I

I Main Program (continued)

-- declarations of constants and variables

MAX LINENUM constant INTEGER :-NUNLINES - 1;

MAXHANDLER: constant INTEGER :- MAX LINE NUM / 10 + 1;
--- maximum of ten lines per handlef

Phone numbers will be represented by four digits.
The first three digits minus 100 will be the handler number.
The fourth digit will be the line number belonging to

-- that handler. The smallest phone number is 1000,
-- corresponding to line 0 of handler 000.

HANDLERS : array (..MAX HANDLER) of LINE HANDLER;
HANDLER-BUFFERS : array(0..MAXHANDLER) of MESSAGEBUFFER;

PHONES : array (0..MAX LINE NUM) of PHONE;
PHONE-BUFFERS : array(6..MA7_LINENUM) of MESSAGE-BUFFER;

PROCESSOR BUFFER : MESSAGE BUFFER;I DRIVERBUFFER : MESSAGE BUFFER;

use SIMULATION; -- needed in main program body

1- MAINTASK : TASK ID;

-- Bodies of tasks and the SIMULATION package would go here

I.

Ii

I
I CS!I I. 180

I

IMain Program (continued)

I
begin -- body of SWITCH

S-- send buffer indices to line handler and call receiver tasks
for I in O..MAX LINE NUM loop

PHONES(I).STARTUP-(INDEX -> I);
Ii end loop;

for I in O..MAX HANDLER loop
HANDLERS(I).STARTUP (INDEX -> I);1. end loop;

-- wait for RUN LENGTH simultation time to elapseI. GET ID (MAIN TAK);
HOLD (MAIN TASK, RUN LENGTH);

-- Produce statistics and terminate all tasks

end SWITCH;

I.
I

Ii

[
K csI! .190

____ __ - - ___ ____ ___ ____ ___ I

I Body of MESSAGE HANDLER

I task body MESSAGE HANDLER is
-- We will assume the availability of a generic package
-- called LINKED LIST, which is much like SORTED LIST

except that t~ere are no priorities involved and
-- insert puts the new item at the end of the list.

package MESSAGE LIST is new LINKEDLIST(MESSAGE);
use MESSAGELIST;

MESSAGES : LIST;
COUNT : INTEGER :- 0;

begin

CREATE (MESSAGES);

loop'-- no exit from this loop except by termination
I. select

when COUNT > 0 -
accept RECEIVE (M : out MESSAGE) DO

NEXT ENTRY (MESSAGES, M);
COUNT := COUNT - 1;

end RECEIVE;
or accept SEND (M : in MESSAGE) do

INSERT (MESSAGES, M);
COUNT := COUNT + 1;

end SEND;
or when COUNT = 0 => terminate;
end select;

end loop;

end MESSAGE BUFFER;

1.

I

[CSI I.•200

I

Body of SIMULATION

package body SIMULATION is

-- Since the event list is a shared data structure, a task will be

-- used to synchronize access to it.
task LIST HANDLER is

entry XDD ENTRY (ID : TASK ID; TIME : INTEGER);
entry ADVXNCE TIME,-

end LIST HANDLER;

-- A task will be used to manage task ids, again because of
-- shared data structures;
task ID MANAGER is

entrj GET ID (ID : out TASK ID);
entry RETURN_ ID (ID : in TASK ID);

end ID MANAGER;

-- A task will be necessary to keep count of the number of
-- tasks suspended, in order to know when to advance the
-- simulation time.
task COUNTER is

entry INCREMENT;
entry DECREMENT;
entry INCREMENT TOTAL;
entry DECREMENT-TOTAL;

end COUNTER;

-- A task type is introduced to implement task suspension.
task type SIGNAL is

entry SEND;
entry WAIT;

end SIGNAL;

MAXTASKID : constant TASK ID :- MAX LINE NUM * 2;

SIGNALS : array (l..MAX TASK ID) of SIGNAL;

-- one for each task-which could be suspended

1. task body SIGNAL is
beg in

loop
accept SEND;
accept WAIT;

end loop;
j: end SIGNAL;

CSI I. 210

SIMULATION (continued)

I
procedure GET ID (ID : out TASK ID) is
begin -

ID MANAGER.GET ID (ID);
COUNTER. INCREMENTTOTAL;

end GET.ID;

procedure RETURN ID (ID : in TASK ID) is
begin

ID MANAGER.RETURN ID (ID);
COUNTER.DECREMENT-TOTAL;

end RETURN ID;

procedure HOLD (ID : TASK ID; TIME : INTEGER) is
beg in

LIST HANDLER.ADD ENTRY (ID, TIME);
I | COUNFER. INCREMEN;
!! SIGNALS(ID).WAIT; -- suspends this procedure until

-- ADVANCE TIME does a SIGNALCOUNTER. DECREMENT ;

end HOLD;

procedure RECEIVE MESSAGE (BUFFER : in MESSAGE BUFFER;
be : out MESSAGE) isbeg in

select
BUFFER.RECEIVE (M);Ielse ;-- no messages currently available
COUNTER. INCREMENT;
BUFFER.RECEIVE (M);

-- will cause suspension until a massage comes
COUNTER. DECREMENT;

end select;1 end RECEIVE MESSAGE;

1.
Ii

[
!
I CSI I. 220

I

SIMULATION (continued)

!
task body LIST HANDLER is

-- This task will use a package like SORTED LIST to implement
an event list, except that the items musF be sorted in

-- ascending proirity order.
-- (The "priorities" are event times.)

I package LIST PACKAGE is new ASCENDING SORTED LIST (TASK ID);
use LIST PACKAGE;

EVENT LIST : LIST:
ID : TASK ID;
SIM TIME : INTEGER := 0; -- simulation time

begin -
CREATE (EVENTLIST);
loop

select
accept ADD ENTRY (ID :TASK ID; TIME : INTEGER) do

INSERT TEVENTLIST, ID,-SIM.TIME+TIME);
end ADD ENTRY;

or accept ADVANCE TIME;
NEXT ENTRY (EVENT LIST, ID, SIM TIME);
SIGNKLS(ID).SEND;--- awakens a Task in HOLD

end select;
end loop;

end LISTHANDLER;

task body ID MANAGER is
NEXT TASK-ID : INTEGER := 0;
ID STT : array (l..MAX TASK ID) of range O..MAX TASK ID;

begin-
for I in l..MAX TASK ID-i loop

ID SET(I) :=-I+l;
end lop;
ID SET(MAXTASKID) := 0;
loop

select
when NEXT TASK ID / 0
accept GET ID (ID : out TASK ID) do

ID :- NEXT TASK ID;
NEXT TASK TD :--ID SET(NEXTTASKID);

end GET-ID; -
or accept RETURN ID (ID : in TASK ID) doi. ID SET(ID)-:- NEXT TASK ID;-

NEXT TASK ID :- ID;
end RETURN_115;

end select;
end loop;

end ID MANAGER;

[CSI I. 230

I

SIMULATION (continued)

I
task body COUNTER is

TOTALTASKS, SUSPENDEDTASKS : INTEGER := 0;
beg in

loop
select

accept INCREMENT TOTAL do
TOTAL TASKS := TOTALTASKS + 1;

end INCREMENTTOTAL;

I or accept DECREMENT TOTAL do
TOTAL TASKS := TOTAL TASKS - 1;

end DECRYMENTTOTAL;

or accept INCREMENT do
SUSPENDED TASKS := SUSPENDED TASKS + 1;
if SUSPEN15ED TASKS >= TOTAL 'TASKS then

ADVANCE_TIfME;
end if;

end INCREMENT;

or accept DECREMENT do
SUSPENDEDTASKS := SUSPENDED TASKS - 1;

end DECREMENT;

or terminate;

Tend select;
end loop;

end COUNTER;

end SIMULATION;

CS1. 4

i
i

I

I

I CSI I.* 240

,I

Body of LINE HANDLER;

The following task body provides a simple example of the use of
the simulation and message buffering capabalities by a task which
represents one of the simulation objects.
task body LINE HANDLER is

M : MESSAGE;
MY NUMBER : INTEGER; -- used as message buffer index
ME-: TASK ID; -- for identification to SIMULATION package

HANDLING-TIME : constant := 50; -- units of simulation time

use SIMULATION;

beg in
accept STARTUP (INDEX : INTEGER) do

MY NUMBER := INDEX;
E end STARTUP;

; GET ID (ME) ;
loop -- loops forever, simulating a line handler

RECEIVE MESSAGE (HANDLER BUFFERS(MY NUMBER), M);
case M.KIND is

when DIGIT I HOOK =>
-- line event; pass on to call processor
M.SENDER := MY NUMBER;
PROCESSOR BUFFER. SEND (M);

when STATUS I NOISE =>
-- from call processor; send on to phone
M.SENDER := MY NUMBER;
PHONE BUFFERS(M. LINE NUM) .SEND (M);

when DETAIL => null; -- should never occur

end case;

-- simulate processor time used to handle message

edHOLD (ME, HANDLINGTIME);
. end loop;

end LINE HANDLER;

CSI 1.250

SUMMARY

SYNTAX
-designed for readability

DECLARATIONS and TYPES
- factorization of pro-perties, maintainabilityII- abstraction, hiding of implementation details
- reliability, due to checking
- floating point and fixed point, portability

- access types, utility and security

STATEMENTS
- assignment, iteration, selection, transfer
- uniformity of syntax (comb structure)
- generally as simple as possible

(e.g., iteration control)

SUB. ;RAMS
- procedures and functions
- logically described parameter modes

(as opposed to definition by
implementation description)

- overloading

PAC KAG ES
- modularity and abstraction
- structuring for complex programs
- hiding of implementation, maintainability
- major uses:

. named collections of declarations
. groups of related subprograms
. encapsulated data types

I
I LIBRARIES

L I - separate compilation

- generics
- program development environment

TASKING
- can be done completely with Ada features
- single concept for intertask communication

and synchronization
- interface with external devices
- designed for efficient implementation

EXCEPTION HANDLING
- for reliability of real-time systems
- standard vs. user-defined exceptions
- meant mainly for handling errors

(rather than as a general programming
technique)

MACHINE DEPENDENCIES
- representation specifications
- interface with other languages
- low level I/O

I

I
I
I

I Ada IS DESIGNED FOR

WRITING LARGE PROGRAMS

:1 Ada HAS FEATURES TO ALLOW

SUITABLE EXTENSIONS FOR

A PARTICULAR APPLICATION

Ada IS A DESIGN LANGUAGE

I
What haven't we discussed ???

I
GO TO statements

j Representation Specifications

1Details of Generics

Input-Output

Pragmas

Inline procedures

Interface to other languages

i

1HELBAT BIFF

HUMAN

ENGINEERING

LABORATORIES

BATTALION

ARTILLERY
TEST

BATTLEFIELD

IDENTIFICATION

FRIEND

OR
FOE

I.

I

PROBLEMl STATEMENT

FIRE AT (AND HIT) ENEMY TARGETS

I FUNCTIONAL SPECIFICATION (PARiIAL)

INPUT FROM - RADAR UNITI. HUMAN OPERATOR

OUTPUT TO - HUMAN OPERATOR
REMOTE ARTILLERY
LOCAL WEAPON CONTROL

1. OPERATOR DISPLAY -PLASMA SCOPE
(NOMINALLY 9260 BAUD)

I OPERATOR INPUT DEVICE -TOUCH PANEL

CS1102

I
I RADAR INPUT

I DMA (DIRECT MEMORY ACCESS) DUMP. EVERY 20 MILLISECONDS

ON INTERRUPT FROM RADAR HARDWARE, OF 19 16-BIT "WORDS".I
FORMAT:I

WORD(S) BIT(S) MEANING

0 0 .. 13 ANTENNA AZIMUTH

1 0.,1 1-ST BEACON ID

11 1 2 .. 13 1-ST BEACON RANGE

1' 2 0.. 1 2-ND BEACON ID

2 2 .. 13 2-ND BEACON RANGE

3 0 ., 13 CENTER OF SCAN SECTOR

4 0 IN INTERROGATE MODE ?

4 1 SEARCH RANGE (SHORT. LONG)

q 4 2 .. 3 WIDTH OF SCAN SECTOR

4 4 .. S DIRECTION OF SCAN

. 4 6.. 7 RATE OF SCAN

S..17 0 ..199 RANGE PROFILE

18 0 .. is ERROR_FLAG

i[
![

CSIII.030
L

[I
Ii PLASMA SCOPE DISPLAY

for
I lE.BAT BIFF OPERATOR

Semw ...

I

I. 14th ...

I.

mssom oerflow line _______

m mci ALVO S olnTA[ERR ERASE STRT

[!

I Q I

POLICY - destroy wenev targets

Ii locate a target -

I ~If It's not friendly,
then destroy It

I;
1.
1.
Ii

[
E,

and ~~ perepio exen l -

I
I
I
I
I

percetion decide onca
of tasis of u e

J-external policy and in
and perception external or

Internal Wtmt action Internal
states to take states

I.Ii

iii Sim if led ~

NOW

I

I
I
I

e e
n n
v PTMR P SOR EFCTOR v
I I
r perc ption decide on r

of basis of dim
* external policy -d In

n and perception external orM m mI

e Internal Whit action Internal e
states to take states

n n

I.

t t

Sirrl If led Actor Modiel

i

--

I

I

I
I

e e

IV PECPO PPM uaf.mR v

r perceptin decide an cmuse r0 of basis of dam 0

, exterml wlIcy aid In n
ad mroption external or

internal V= action Internol ee states to take statesn nt I t

1A: Sirplif led Actor Pbdel

[
[

I:
I

IOJ

e e
in n

y UT P[P)CESSOR STE=__ v

perce~tion decide an is
r Ofbasis of rh
0 ~)iY~0

M aid ~~perceptionexrnlo
inera wat action Internail'

e states ~ to take sae
t t

Slril If led Actor Mdel

I
I

I
!

1
e (Perceptor) (Processor) (effector) e

I n n
v v

r r
0 0

" n n n* I

m m
e e
n n , n
t t,,t , t

I i

,I I
. .I I

I. I

I.

I
I:

[

PROCESSOR IMPLEMENTATION

FOR THIS SYSTEM: HUMAN DECISION MAKER

ATTRIBUTES :

INPUT -INFORMATION RATE?
PERCEIVABLE STIMULI?

OUTPUT -INFORMATION RATE?
MODES (HANDS. VOICE. ..)

SYSTEM -ALERTNESS

RESPONSE TIME
PROFICIENCY

(EMBEDDED HUMAN SYSTEM)

I.

I PER07OR

MM TI

J perceptor (processor) (effector) e
n n

v v

n r
PFAPArION sCOP

e e
n n f
t t

I t

I

I DISPLAY

SPEPARATION

I

e (perceptor) (processor) (effector) e
n ntrelateum d1s I , v

S I r'abr -IfM to sendl I

r inforrtlon -fnfontfln r
0 to display into
n relate ccrrzids for n
m ,oertor P]Osn Scope m
e actlons to Scope e
n , dIs lay (buffer) n_ _ fl
t I S tI a

* I
* a
I !I S

i
I
!

I

MFCrOR
I!MMWE1TATItOJ

e (Derceptor (Processor (effector) e

v ~Interpret

-I I EAO
r TOLI~J~ totch mc'l,r

0_ _ wpaae _ _

IU IT
n

chos
M NE

MII

IPPLEMEWfAT! ON

e perceptor (procesor) effemtr) e

e ni

r rrrite

0 0

e In
e f o n

n
t

t

PLASM~'
SCOPE

[:OC AE

I.T~

PLMS
sm~

Iw

II TOUO' PAWEL

A DISPLAY
IMERFACEGUERATOR

WIT

1'~~WC PAWL JJ 'I

V.46

1.~

WRTE

LAWW4

1.SO
OPRTIN

TOC
1w

-,

TOC AELPfLDIPTEIiDE

[I RTAS.CNI

I TRAEIITRAEWAO

I
HELBAT BIFF

PERCEPTOR -

SENSOR- (RADAR)
OPERATOR'S DISPLAY HANDLER

DIS.PLAY DEVICE COMMAND FORMATTER
BUFFER

DISPLAY DEVICE WRITER
ENVIRONMENTAL SENSOR INFORMATION

SENSOR INTERFACE
SENSOR INFORMATION DISPLAY GENERATOR

INTERNAL INFORMATION FROM OPERATOR COMMANDS
DISPLAY DEVICE - (PLASMA SCOPE)

PROCESSOR - (HUMAN OPERATOR)

EFFECTOR -

OPERATOR INPUT DEVICE - (TOUCH PANEL)
OPERATOR COMMAnD HANDLER

COMMAND DISPATCHER
OPERATOR INPUT DEVICE READER
DISPLAY AND EFFECTOR CONTROL

CURSOR AIMING
COMMAND INDICATOR LIGHTING
WEAPON AIMING
TARGET LOCATION TRANSMISSION HANDLER

WE A PON
TRANSMITTER
OPERATOR'S DISPLAY HANDLER

I.I

I
I CSIII.180

I WITH LINKED_LIST_FIFO_QUEUE. RINGQUEUE&

PROCEDURE HELBATBIFF IS

PACKAGE COmmON..DEFINITIONS IS

END" COMONDEFINITIONS;

J PACKAGE OPERATORDISPLAY HANDLER IS

PACKAGE DISPLAYDEVCECOMMANDFORMATTER IS

II PACKAGE DISPLAY DEICE-COMMAND_BUFFER IS
NEW RINGQUEUE ..

-- DECLARATIONS OF PROCEDURES THAT HANDLE
.. CODING AN BUFFERING OF COMMANDS FOR
-- OTHER TASKS

I. END DISPLAYDEVICECOMMANDFORMATTERg

TASK TYPE DISPLAYDEVICEWRITER;

PACKAGE SENSORINFORMATION IS

PACKAGE SENSORDEFINITIONS IS

END SENSOR-DEFINITIONS&

TASK TYPE SENSORINTERFACE IS
-" DECLARATIONS OF ENTRIES AND
-- REPRESENTATION SPECIFICATION

END SEN'SOR_INTERFACEI

-------------- ---------------

TASK TYPE SENSORINFORMATIONDISPLAYGENERATORu

END SENSORINFORMATIONs

END OPERATORDISPLAYHANDLER;

CSIII. 190

- £

I PACKAGE OPERATOR_COMMAND..HANDLER IS

PACKAGE OPERATOR.,COMMAND_DEFINITIONS IS

I END OPERATOR COMMAND..DEFINITIONSs

-- ----- ---
TASK TYPE COMMAND..DiSPATCHER IS

J END COMMAND..DISPATCHERI

1 TASK TYPE OPERATOR_INPUT_DEVICE_.READERI

I ~PACKAGE DiSPLAY..ANDJ.FFECTORCONTROL IS

PACKAGE AimING_.INFORMATION IS

END*AimiNG_IN FORMATION:

TASK TYPE AIMINGCURSOROPERATIONS:
!ASK TYPE COMMAND INDICATORLIGHTINGi
TASK TYPE WEAPONTIMING;
TASK TYPE TARGET...LOCATioNTRANSMISSION-.HANDLER;

END DISPLAY_AND_Er VECTORCONTROL:

END OPERATOR_COMMAND_HANDLER;

-PACKAGE BODIES ARE SEPARATELY COMPILED

TYPE DISPLAY WRITER IS ACCESS
OPERATORDISPLAYHANDLERDISPLAY-DEVICE_.WRITER:ij -- NOTE: THIS TYPE POINTS TO TASKS

PLASMASCOPEWRITER :DiSPLAY..WRITERt

BEGIN -- BODY OF HELBATBIFF

3 CSIII.200

I
I
I
I
J BEGIN -- HELBAT..BIFF

LOOP

f BEGIN -- ACTIVATE TASKS IN PROPER ORDER

0 . *

21 DELAY 10 0 SECONDS&

1 PLASMA.SCOPE WRITER :- NEW DISPLAY-WRITERt

ENDi

END LOOP;

END HELBATBIFF,

I

I

II CSIII. 210

PACKAGE SENSORDEFINITIONS IS

FOURTEELBITS-_UIL : CONSTANT INTEGER : 1603FFFN.1

SUBTYPE RA2 IS INTEGER RANGE O..FOURTEEN..BITS..ULLs

SUBTYPE RANGEBIN IS INTEGER RANGE O..1991

TYPE DIRECTION IS (NONE. LEFT TO RIGHT. RIGHTTOLEFT.
SEARCHLIGTST)T-

1 FOR DIRECTION USE (NONE w> 0.
LEFT TO RIGHT -> 1.
RIGHT TD LEFT => 2.

l SEARCR..LTGHT -> 3);

TYPE PROFILE OF RANGE IS
ARRAY T RTNGEBIN'FIRST .. RANGEBIN'LAST) OF BOOLEAN;

TYPE RADARINPUT IS
RECORD

ANTENNAAZIMUTH • RAZi
FIRSTBEACON_ID . INTEGER RANGE 0..3;
FIRST-BEACONRANGE : INTEGER RANGE 0.4095;
SECOND-BEACON-ID € INTEGER RANGE 0..3:
SECONDBEACONRANGE : INTEGER RANGE O..A095;
CENTEROF.SCAN SECTOR : RAZs
ININTERROGATE-MODE : BOOLEANi
SEARCH.RANGE : INTEGER RAN4GE O..1A;
WIDTHOFSCAN_SECTOR : INTEGER RANGE 0..3.
DIRECTIONOFSCAN : DIRECTIONi
RATE_OFSCAN : INTEGER RANGE 0..3.
RANGEPROFILE : PROFILEOFRANGE;
ERRORFLAG . INTEGER RANGE O..16#FFFFN;

, END RECORD;

csiii.230

I PACKAGE SENSORDEFINITIONS IS

FOURTEEN.BITSFULL : CONSTANT INTEGER Vs 16#3FFF#-.

I SUBTYPE RAZ IS INTEGER RANGE O..FOURTEEN.BITS..YULLs

SUBTYPE RANGE-BIN IS INTEGER RANGE O..199s

TYPE DIRECTION IS (NONE6 LEFT TO RIGHT. RIGHTTOLEFT.S EARCH_-LIGFIT)T--

I FOR DIRECTION USE (NONE *> 0.
LEFT TO RIGHT ->1
RIGHT TD LEFT 2.
SEARCi-TGHT 3)l

TYPE PROFILE OF RANGE IS
ARRAY T RANGE..BIN'FIRST .. RANGE-BIN'LAST) OF BOOLEAN;

TYPE RADARINPUT IS
-RECORD

ANTENNA-AZIMUTH = RAZI
FIRSTBEACONID : INTEGER RANGE 0..3.
FIRSTBEACONRANGE = INTEGER RANGE O.A095;
SECONDBEACONID : INTEGER RANGE O..3t
SECONDBEACONRANGE : INTEGER RANGE O..40951
CENTEROFSCANSECTOR - RAZo
IN.INTERROGATEMODE : BOOLEAN;
SEARCHRANGE • INTEGER RANGE O..1;
WIDTH_OFSCAN_SECTOR = INTEGER RANGE 0..3;
DIRECTIONOFSCAN : DIRECTION;
RATEOFSCAN : INTEGER RANGE 0..3
RANGEPROFILE : PROFILEOFRANGE%
ERROR_FLAG : INTEGER RANGE O..16#FFFF#;

END RECORD;

tI

CSIII-230
..

I

I "- PACKAGE SENSORDEfINITIONS (CONTINUED)

FOR RADARINPUT USE
RECORD

ANTENNA-AZIMUTH AT 0 , WORD INTEGER RANGE 0..13,
FIRST BEACON ID AT I * WORD INTEGER RANGE O..1:
FIRST-BEACON-RANGE AT 1 WORD INTEGER RANGE 2..13:
SECONDBEACOILID AT 2 ' WORD INTEGER RANGE 0..1s
SECONDBEACONRANGE AT 2 WORD INTEGER RANGE 2..13&
CENTER OFSCAN SECTOR AT 3 ' WORD INTEGER RANGE O..13;
ININTERROGATE"MODE AT 4 WORD INTEGER RANGE O..0;
SEARCHRANGE AT q * WORD INTEGER RANGE 1..1:
WIDTHOFSCANSECTOR AT 4 * WORD INTEGER RANGE 2..3;
DIRECTIONOF.SCAN AT 4 S WORD INTEGER RANGE q..5;
RATEOFSCAN AT 4 WORD INTEGER RANGE 6..7,
RANGE-PROFILE AT 5 * WORD INIEGER RANGE O..199;
ERROR-FLAG AT 18 , WORD INTEGER RANGE 0..15;IEND RECORD;

I I RADARBUFFER : RADARINPUTo

RADAR3UFFER ADDRESS : CONSTANT INTEGER
:- RADA'RBUFFER'ADDRESS&

RADAR-INPUT..LENGTH : CONSTANT INTEGER

END SENSORDEFINITIONS;

6I.

I
[
[

E CSIII .220

TASK BODY SENSOR-INTERFACE ISI USE SENsoRDEFIN1TIONSs

PROCEDURE CLEARTHE-DMA AND.THE-LATCH IS ... ENDs
PROCEDURE SET UP THE DPI..R...FTHE-NEXTJ.URST IS ... ENDs
PROCEDURE SET:-TEATCHJ FOR THE.NEXT..BURST IS ... END#

I PRAGIIA PRIORITY(SYSTEM'MAX..YRIORITY)i

BEGIW

I LOOP

ACCEPT DMA.YINISHEDINTERRUPTi

I ~CLEAR .THE DMA AI4D-HEJ.ATCI4,
SET_.UPJHLNEDMFORTHE.NEX....URST,

I SELECT
ACCEPI RE QUE STF0R-RAD AR-INPUT(OUTPUT :OUT SENSOR-..INPUT)

DO OUTPUT :& RADARBUFFERsI END#
- EL SE

SEND ERROR-MESSAGE (RADARO0VERRUN)sj END SEL'ECTs

SE Li HE1A TC LFO R-TH ENE X TUR STs

'V END LOOPs
END SENSOR-INTERFACEi

CSIII.?qo

I

PROCEDURE CLEAR THE DMA ANDJTHELATCH ISUSE LOWLEVEOS- -
BEGIN

SEND CONTROL (DMA. (CLEAR))vISEND..CON7ROL (LATCH. (CLEAR))s
END CLEARTHE..DMA.ANDTHELATCHo

I
PROCEDURE SET..UP THE DMAkFORTHENEXT-BURST IS

USE LOWLEVEL-IO- -
BEGIN

SEND CONTROL (DMA. (SET ADDRESS. RADAR BUFFER ADDRESS))s
SEND-CONTROL (DMA. (SET-COUNT. -RADAR .NPUT L'NGTH))i

I SEND-CONTROL (DMA. (SET-DIRECTION. INARDS)-),
SEND-CONTROL (DMA. (START))h

END SET-UP.THE DA..FOR.THENEXTBURSTo

I PROCEDURE SET.THE LATCH FORTHE.JNEXTBURST IS

USE LOWLEVEL_.OI
BEGIN

SENDCONTROL (LATCH. (START));
END SETTHELATCH_FORTHENEXBURSTI

[
I

I

[
I
I

I PACKAGE OPERATORCOMMANDDEFINITIONS IS

TYPE OPERATOR INSTRUCTION IS
,D1D SK .D SPLASH.

ACKNOEDGE ERROR7

AUTO ERASE.-SLEW WEAPON.
RE TART. ARM DISARM.UUMHPLEAIENTED)

TYPE OPERATOR.COMMAND (INSTRUCTION : OPERATOR-INSTRUCTION) IS
RECORD

CASE INSTRUCTION IS
WHEN AIPM.CURSORS ->

AIM-DIRECTION : SCREEN DIRECTION#
DELTAINDEX : COORDIATEVALUEs

WHEN OTHERS => NULLS
1.END CASES

END RECORDS

END OPERATORCOMMAND_DEFINITIONS&

I. I..

I°

i
Il

ICSI.0

I

I| SEPARATE (OPERATOR COMIIAND HANDLER)
TASK BODY OPERAOR-INP.UDVICE READER IS

PROCEDURE CONVERT THETOUCHTOACOMMAND IS
X. Y : COORDINATE "VALUE&
COMMAND-VECTOR : 1NTEGER RANGE 101 .. 16161BEI

EiCASE*COMMANDVECTOR IS

WHEN 1023-> COMMAND - (HOME CURSOR),
WHEN 1403 " COMMAND :" (PARK-CURSOR)i

WHEN OTHERS -> COMMAND :- (UNIMPLEMENTED)s
END CASES

If END "CN;ERTTHETOUC H..TO A._COMMAND,

BEGIN -- OPERATOR INPUTDEVICEREADER
LOOP

READ A TOUCHg
CONV'ER.T HE_TO UCHTOACOMMANDs
CASE COMMAND.INSTRUCTION IS

WHEN ARM I DISARM I UNIMPLEMENTED -> NULLS
-- ARM AND DISARM ARE USED BY CONVERTTHETOUCH I
-- TOA COMIMAND TO ARM OR DISARM THE TOUCH PANEL INPUT

WHEN OTHERS -> SENDNEXT (COMMAND)h
-- REQUEST RENDEZVOUS WITH OPERATOR COMMANDHANDLER

-- TO PASS A GOOD COMMAND TO IT

EDEND CASE S

END LOOPS
END OPERATOR_INPUTDEVICEREADER&

I

I.

I
ii

I
~CSIII .270,

TASK BODY COMMAND DISPATCHER ISI USE COMMAND-.QUEfUE. OPERATOR...COMMADDEFINIIIONSi

BEBiN* - COMMAND..DISPATCHERI LOOP

SELECT
ACCEPT SEND-NEXT (COMMAND : IN OPERATORCOMMAND)s

* DO LA1ESTCOMMAND :a COMMANDs
END SEND NEXTi
INSERT (-LATEST_.COMMAND)s

EL SE
SELECT

3 W HEN (CURRENL..COMMAND.INSTRUCTION - AIMRA6'E..CURSOR)
OR (CURRENTCOMMAND.INSTRUCTj NZMT CUSR

OR~~~~~~ AZINLOMAD..ISRUTTNHOM CURSOR)
OR (CURRENTCOMIIANDJNSTRUCTION - HOMEKCURSORS)

IOR (CURNJMADI T~CINI

I ACCEPT AcQUIRE-NEXTCURSOR-OPERATION
(COMMAND : OUT OPERATORCOMMAND)

00 COMMAND :a CURRENT..COMMANDs

END AcQUIRE-.NEXTLCURSOR..OPERATIONs

END'SELECT.

END*SELECT,

END LOOP;

a. END COMMAND_.DiSPATCHERt

CSII28

